Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed methods and lower eigenvalue bounds (2401.04519v1)

Published 9 Jan 2024 in math.NA and cs.NA

Abstract: It is shown how mixed finite element methods for symmetric positive definite eigenvalue problems related to partial differential operators can provide guaranteed lower eigenvalue bounds. The method is based on a classical compatibility condition (inclusion of kernels) of the mixed scheme and on local constants related to compact embeddings, which are often known explicitly. Applications include scalar second-order elliptic operators, linear elasticity, and the Steklov eigenvalue problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. G. Acosta and R. G. Durán. Divergence operator and related inequalities. New York, NY: Springer, 2017.
  2. Finite element exterior calculus, homological techniques, and applications. Acta Numerica, 15:1–155, 2006.
  3. D. N. Arnold and R. Winther. Mixed finite elements for elasticity. Numer. Math., 92(3):401–419, 2002.
  4. D. Boffi. Finite element approximation of eigenvalue problems. Acta Numer., 19:1–120, 2010.
  5. Mixed Finite Element Methods and Applications, volume 44 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2013.
  6. D. Braess. Finite Elements. Theory, Fast Solvers, and Applications in Elasticity Theory. Cambridge University Press, Cambridge, third edition, 2007.
  7. Z. Cai and Y. Wang. A multigrid method for the pseudostress formulation of Stokes problems. SIAM J. Sci. Comput., 29(5):2078–2095, 2007.
  8. C. Carstensen and D. Gallistl. Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math., 126(1):33–51, 2014.
  9. L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT best-approximation of the elastic stress in the Arnold-Winther FEM. IMA J. Numer. Anal., 36(3):1096–1119, 2016.
  10. C. Carstensen and J. Gedicke. Guaranteed lower bounds for eigenvalues. Math. Comp., 83:2605–2629, 2014.
  11. C. Carstensen and S. Puttkammer. Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates. 2022. https://arxiv.org/abs/2203.01028.
  12. L. Chen and X. Huang. Finite elements for divdiv-conforming symmetric tensors. 2020. arXiv:2005.01271.
  13. M. Costabel and M. Dauge. On the inequalities of Babuška-Aziz, Friedrichs and Horgan-Payne. Arch. Ration. Mech. Anal., 217(3):873–898, 2015.
  14. D. Gallistl. A posteriori error analysis of the inf-sup constant for the divergence. SIAM J. Numer. Anal., 59(1):249–264, 2021.
  15. D. Gallistl and V. Olkhovskiy. Computational lower bounds of the Maxwell eigenvalues. SIAM J. Numer. Anal., 2022. In press.
  16. J. Guzmán and M. Neilan. Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comp., 83(285):15–36, 2014.
  17. On inequalities of Korn, Friedrichs and Babuška-Aziz. Arch. Rational Mech. Anal., 82(2):165–179, 1983.
  18. Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality. J. Differential Equations, 249(1):118–135, 2010.
  19. X. Liu and S. Oishi. Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape. SIAM J. Numer. Anal., 51(3):1634–1654, 2013.
  20. An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal., 5:286–292, 1960.
  21. Verified norm estimation for the inverse of linear elliptic operators using eigenvalue evaluation. Jpn. J. Ind. Appl. Math., 31(3):665–679, 2014.
  22. A. Weinstein and W. Stenger. Methods of Intermediate Problems for Eigenvalues, volume 89 of Theory and Ramifications, Mathematics in Science and Engineering. Academic Press, New York, 1972.
  23. Guaranteed eigenvalue bounds for the Steklov eigenvalue problem. SIAM J. Numer. Anal., 57(3):1395–1410, 2019.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Dietmar Gallistl (23 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.