2000 character limit reached
Mixed methods and lower eigenvalue bounds (2401.04519v1)
Published 9 Jan 2024 in math.NA and cs.NA
Abstract: It is shown how mixed finite element methods for symmetric positive definite eigenvalue problems related to partial differential operators can provide guaranteed lower eigenvalue bounds. The method is based on a classical compatibility condition (inclusion of kernels) of the mixed scheme and on local constants related to compact embeddings, which are often known explicitly. Applications include scalar second-order elliptic operators, linear elasticity, and the Steklov eigenvalue problem.
- G. Acosta and R. G. Durán. Divergence operator and related inequalities. New York, NY: Springer, 2017.
- Finite element exterior calculus, homological techniques, and applications. Acta Numerica, 15:1–155, 2006.
- D. N. Arnold and R. Winther. Mixed finite elements for elasticity. Numer. Math., 92(3):401–419, 2002.
- D. Boffi. Finite element approximation of eigenvalue problems. Acta Numer., 19:1–120, 2010.
- Mixed Finite Element Methods and Applications, volume 44 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2013.
- D. Braess. Finite Elements. Theory, Fast Solvers, and Applications in Elasticity Theory. Cambridge University Press, Cambridge, third edition, 2007.
- Z. Cai and Y. Wang. A multigrid method for the pseudostress formulation of Stokes problems. SIAM J. Sci. Comput., 29(5):2078–2095, 2007.
- C. Carstensen and D. Gallistl. Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math., 126(1):33–51, 2014.
- L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT best-approximation of the elastic stress in the Arnold-Winther FEM. IMA J. Numer. Anal., 36(3):1096–1119, 2016.
- C. Carstensen and J. Gedicke. Guaranteed lower bounds for eigenvalues. Math. Comp., 83:2605–2629, 2014.
- C. Carstensen and S. Puttkammer. Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates. 2022. https://arxiv.org/abs/2203.01028.
- L. Chen and X. Huang. Finite elements for divdiv-conforming symmetric tensors. 2020. arXiv:2005.01271.
- M. Costabel and M. Dauge. On the inequalities of Babuška-Aziz, Friedrichs and Horgan-Payne. Arch. Ration. Mech. Anal., 217(3):873–898, 2015.
- D. Gallistl. A posteriori error analysis of the inf-sup constant for the divergence. SIAM J. Numer. Anal., 59(1):249–264, 2021.
- D. Gallistl and V. Olkhovskiy. Computational lower bounds of the Maxwell eigenvalues. SIAM J. Numer. Anal., 2022. In press.
- J. Guzmán and M. Neilan. Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comp., 83(285):15–36, 2014.
- On inequalities of Korn, Friedrichs and Babuška-Aziz. Arch. Rational Mech. Anal., 82(2):165–179, 1983.
- Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality. J. Differential Equations, 249(1):118–135, 2010.
- X. Liu and S. Oishi. Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape. SIAM J. Numer. Anal., 51(3):1634–1654, 2013.
- An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal., 5:286–292, 1960.
- Verified norm estimation for the inverse of linear elliptic operators using eigenvalue evaluation. Jpn. J. Ind. Appl. Math., 31(3):665–679, 2014.
- A. Weinstein and W. Stenger. Methods of Intermediate Problems for Eigenvalues, volume 89 of Theory and Ramifications, Mathematics in Science and Engineering. Academic Press, New York, 1972.
- Guaranteed eigenvalue bounds for the Steklov eigenvalue problem. SIAM J. Numer. Anal., 57(3):1395–1410, 2019.
- Dietmar Gallistl (23 papers)