Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Covariance Alignment for Domain Adaptive Remote Sensing Image Segmentation (2401.04412v1)

Published 9 Jan 2024 in eess.IV

Abstract: Unsupervised domain adaptive (UDA) image segmentation has recently gained increasing attention, aiming to improve the generalization capability for transferring knowledge from the source domain to the target domain. However, in high spatial resolution remote sensing image (RSI), the same category from different domains (\emph{e.g.}, urban and rural) can appear to be totally different with extremely inconsistent distributions, which heavily limits the UDA accuracy. To address this problem, in this paper, we propose a novel Deep Covariance Alignment (DCA) model for UDA RSI segmentation. The DCA can explicitly align category features to learn shared domain-invariant discriminative feature representations, which enhances the ability of model generalization. Specifically, a Category Feature Pooling (CFP) module is first employed to extract category features by combining the coarse outputs and the deep features. Then, we leverage a novel Covariance Regularization (CR) to enforce the intra-category features to be closer and the inter-category features to be further separate. Compared with the existing category alignment methods, our CR aims to regularize the correlation between different dimensions of the features and thus performs more robustly when dealing with the divergent category features of imbalanced and inconsistent distributions. Finally, we propose a stagewise procedure to train the DCA in order to alleviate the error accumulation. Experiments on both Rural-to-Urban and Urban-to-Rural scenarios of the LoveDA dataset demonstrate the superiority of our proposed DCA over other state-of-the-art UDA segmentation methods. Code is available at https://github.com/Luffy03/DCA.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. J. Wang, Z. Zheng, A. Ma, X. Lu, and Y. Zhong, “LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation,” in Thirty-fifth Conference on Neural Inf. Process. Syst. Datasets and Benchmarks Track (Round 2), 2021. [Online]. Available: https://openreview.net/forum?id=bLBIbVaGDu
  2. D. Li, G. Zhang, Z. Wu, and L. Yi, “An edge embedded marker-based watershed algorithm for high spatial resolution remote sensing image segmentation,” IEEE Trans. Image Process., vol. 19, no. 10, pp. 2781–2787, Nov. 2010.
  3. H. Sheng, X. Chen, J. Su, R. Rajagopal, and A. Ng, “Effective data fusion with generalized vegetation index: Evidence from land cover segmentation in agriculture,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020, pp. 267–276.
  4. L. Ding, J. Zhang, and L. Bruzzone, “Semantic segmentation of large-size vhr remote sensing images using a two-stage multiscale training architecture,” IEEE Trans. on Geosci. Remote Sens., vol. 58, no. 8, pp. 5367–5376, Jan. 2020.
  5. Q. Wang, J. Gao, and X. Li, “Weakly supervised adversarial domain adaptation for semantic segmentation in urban scenes,” IEEE Trans. Image Process., vol. 28, no. 9, pp. 4376–4386, Apr. 2019.
  6. E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 640–651, May. 2017.
  7. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” vol. 9351, Oct. 2015, pp. 234–241.
  8. Z. Zhou, M. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: Redesigning skip connections to exploit multiscale features in image segmentation,” IEEE Trans. Med. Imag., vol. 39, no. 6, pp. 1856–1867, Jul. 2020.
  9. H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2017, pp. 6230–6239.
  10. T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2017, pp. 936–944.
  11. J. Xie, L. Fang, B. Zhang, J. Chanussot, and S. Li, “Super resolution guided deep network for land cover classification from remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–12, Feb. 2022.
  12. N. He, L. Fang, and A. Plaza, “Hybrid first and second order attention unet for building segmentation in remote sensing images,” Sci. China Inform. Sci., vol. 63, no. 4, pp. 1–12, 2020.
  13. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 770–778.
  14. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2015.
  15. Y. H. Tsai, W. C. Hung, S. Schulter, K. Sohn, and M. Chandraker, “Learning to adapt structured output space for semantic segmentation,” in 2018 IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018, pp. 7472–7481.
  16. Y. Luo, L. Zheng, T. Guan, J. Yu, and Y. Yang, “Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation,” in 2019 IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2502–2511.
  17. H. Wang, T. Shen, W. Zhang, L. Duan, and T. Mei, “Classes matter: A fine-grained adversarial approach to cross-domain semantic segmentation,” in Euro. Conf. Comput. Vis. (ECCV), Aug. 2020, pp. 642–659.
  18. X. Wang, Y. Jin, M. Long, J. Wang, and M. I. Jordan, “Transferable normalization: Towards improving transferability of deep neural networks,” in Adv. Neural Inf. Process. Syst.(NIPS), Jul. 2019.
  19. Q. Lian, L. Duan, F. Lv, and B. Gong, “Constructing self-motivated pyramid curriculums for cross-domain semantic segmentation: A non-adversarial approach,” in 2019 IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6757–6766.
  20. Y. Zou, Z. Yu, B. V. Kumar, and J. Wang, “Unsupervised domain adaptation for semantic segmentation via class-balanced self-training,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Oct. 2018, pp. 289–305.
  21. K. Mei, C. Zhu, J. Zou, and S. Zhang, “Instance adaptive self-training for unsupervised domain adaptation,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Aug. 2020, pp. 415–453.
  22. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” ArXiv, 2014.
  23. O. Tasar, S. L. Happy, Y. Tarabalka, and P. Alliez, “Colormapgan: Unsupervised domain adaptation for semantic segmentation using color mapping generative adversarial networks,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 10, pp. 7178–7193, Mar. 2020.
  24. S. Ji, D. Wang, and M. Luo, “Generative adversarial network-based full-space domain adaptation for land cover classification from multiple-source remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 5, pp. 3816–3828, Sep. 2021.
  25. L. Yan, B. Fan, H. Liu, C. Huo, S. Xiang, and C. Pan, “Triplet adversarial domain adaptation for pixel-level classification of vhr remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 5, pp. 3558–3573, Dec. 2020.
  26. O. Tasar, A. Giros, Y. Tarabalka, P. Alliez, and S. Clerc, “Daugnet: Unsupervised, multisource, multitarget, and life-long domain adaptation for semantic segmentation of satellite images,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 2, pp. 1067–1081, Jul. 2021.
  27. L. Zhang, M. Lan, J. Zhang, and D. Tao, “Stagewise unsupervised domain adaptation with adversarial self-training for road segmentation of remote-sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–13, Jan. 2022.
  28. Q. Zhang, J. Zhang, W. Liu, and D. Tao, “Category anchor-guided unsupervised domain adaptation for semantic segmentation,” in Adv. Neural Inf. Process. Syst.(NIPS), Oct. 2019, pp. 433–443.
  29. Z. Wang, M. Yu, Y. Wei, R. Feris, J. Xiong, W.-m. Hwu, T. S. Huang, and H. Shi, “Differential treatment for stuff and things: A simple unsupervised domain adaptation method for semantic segmentation,” in 2020 IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 12 632–12 641.
  30. H. Ma, X. Lin, Z. Wu, and Y. Yu, “Coarse-to-fine domain adaptive semantic segmentation with photometric alignment and category-center regularization,” in 2021 IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 4050–4059.
  31. X.-Y. Tong, G.-S. Xia, Q. Lu, H. Shen, S. Li, S. You, and L. Zhang, “Land-cover classification with high-resolution remote sensing images using transferable deep models,” Remote Sens. Envir, vol. 237, p. 111322, Feb. 2020.
  32. A. Zheng, M. Wang, C. Li, J. Tang, and B. Luo, “Entropy guided adversarial domain adaptation for aerial image semantic segmentation,” IEEE Trans. Geosci. Remote Sens., pp. 1–14, Sep. 2021.
  33. K. Saito, K. Watanabe, Y. Ushiku, and T. Harada, “Maximum classifier discrepancy for unsupervised domain adaptation,” in 2018 IEEE/CVF Conf. Comput. Vis. and Pattern Recognit., Jun. 2018, pp. 3723–3732.
  34. Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. F. Wang, and M. Sun, “No more discrimination: Cross city adaptation of road scene segmenters,” in 2017 IEEE Int. Conf. Compu. Vis. (ICCV), Oct. 2017, pp. 2011–2020.
  35. G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann, “Contrastive adaptation network for unsupervised domain adaptation,” in 2019 IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4888–4897.
  36. J. Hoffman, D. Wang, F. Yu, and T. Darrell, “Fcns in the wild: Pixel-level adversarial and constraint-based adaptation,” arXiv preprint arXiv:1612.02649, 2016.
  37. T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Pérez, “Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation,” in 2019 IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2512–2521.
  38. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Jun. 2018.
  39. X. Chen and K. He, “Exploring simple siamese representation learning,” in 2021 IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 15 745–15 753.
  40. V. D. M. Laurens and G. Hinton, “Visualizing data using t-sne,” Journal of Mach. Learn. Res., vol. 9, no. 2605, pp. 2579–2605, Nov. 2008.
  41. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248–255.
  42. E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep domain confusion: Maximizing for domain invariance,” arXiv preprint arXiv:1412.3474, 2014.
  43. L. Wu, Z. Zhong, L. Fang, X. He, Q. Liu, J. Ma, and H. Chen, “Sparsely Annotated Semantic Segmentation With Adaptive Gaussian Mixtures” in IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023, pp. 15454–15464.
  44. L. Wu, L. Fang, J. Yue, B. Zhang, P. Ghamisi, and M. He, “Deep Bilateral Filtering Network for Point-Supervised Semantic Segmentation in Remote Sensing Images” in IEEE Transactions on Image Processing (TIP), Nov. 2022, Vol. 31, pp. 7419–7434.
  45. L. Wu, M. Lu, and L. Fang, “Deep Covariance Alignment for Domain Adaptive Remote Sensing Image Segmentation” in IEEE Transactions on Geoscience and Remote Sensing (TGRS), Mar. 2022, Vol. 60, pp. 1–11.
  46. L. Wu, L. Fang, X. He, M. He, J. Ma, and Z. Zhong, “Querying Labeled for Unlabeled: Cross-Image Semantic Consistency Guided Semi-Supervised Semantic Segmentation” in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Jan. 2023, Vol. 45, pp. 8827-8844.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Linshan Wu (11 papers)
  2. Ming Lu (157 papers)
  3. Leyuan Fang (26 papers)
Citations (32)