Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
461 tokens/sec
Kimi K2 via Groq Premium
212 tokens/sec
2000 character limit reached

Using gravitational waves to see the first second of the Universe (2401.04388v3)

Published 9 Jan 2024 in hep-ph, astro-ph.CO, gr-qc, and hep-th

Abstract: Gravitational waves are a unique probe of the early Universe, as the Universe is transparent to gravitational radiation right back to the end of inflation. In this article, we summarise detection prospects and the wide scope of primordial events that could lead to a detectable stochastic gravitational wave background. Any such background would shed light on what lies beyond the Standard Model, sometimes at remarkably high scales. We overview the range of strategies for detecting a stochastic gravitational wave background before delving deep into three major primordial events that can source such a background. Finally, we summarize the landscape of other sources of primordial backgrounds.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (634)
  1. Albert Einstein. Näherungsweise integration der feldgleichungen der gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, pages 688–696, 1916.
  2. Albert Einstein. Über gravitationswellen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, pages 154–167, 1918.
  3. Henri Poincaré. La dynamique de l’électron. A. Dumas, 1913.
  4. Daniel Kennefick. Traveling at the speed of thought: Einstein and the quest for gravitational waves. Princeton university press, 2007.
  5. Alexander S Blum. Einstein’s second-biggest blunder: the mistake in the 1936 gravitational-wave manuscript of albert einstein and nathan rosen. Archive for History of Exact Sciences, 76(6):623–632, 2022.
  6. On gravitational waves. Journal of the Franklin Institute, 223(1):43–54, 1937.
  7. B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016a. doi: 10.1103/PhysRevLett.116.061102.
  8. Georges Lemaître. The beginning of the world from the point of view of quantum theory. Nature, 127(3210):706–706, 1931.
  9. A measurement of excess antenna temperature at 4080 mhz. In A Source Book in Astronomy and Astrophysics, 1900–1975, pages 873–876. Harvard University Press, 1979.
  10. N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641:A6, 2020a. doi: 10.1051/0004-6361/201833910. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  11. Antonio Riotto. Theories of baryogenesis. In ICTP Summer School in High-Energy Physics and Cosmology, pages 326–436, 7 1998.
  12. Recent progress in baryogenesis. Ann. Rev. Nucl. Part. Sci., 49:35–75, 1999. doi: 10.1146/annurev.nucl.49.1.35.
  13. The Origin of the matter - antimatter asymmetry. Rev. Mod. Phys., 76:1, 2003. doi: 10.1103/RevModPhys.76.1.
  14. James M. Cline. Baryogenesis. In Les Houches Summer School - Session 86: Particle Physics and Cosmology: The Fabric of Spacetime, 9 2006.
  15. Matter and Antimatter in the Universe. New J. Phys., 14:095012, 2012. doi: 10.1088/1367-2630/14/9/095012.
  16. Electroweak baryogenesis. New J. Phys., 14:125003, 2012. doi: 10.1088/1367-2630/14/12/125003.
  17. Csaba Balazs. Baryogenesis: A small review of the big picture. arXiv preprint arXiv:1411.3398, 2014.
  18. Graham Albert White. A Pedagogical Introduction to Electroweak Baryogenesis. 11 2016. doi: 10.1088/978-1-6817-4457-5.
  19. Baryogenesis from the weak scale to the grand unification scale. Rev. Mod. Phys., 93(3):035004, 2021. doi: 10.1103/RevModPhys.93.035004.
  20. Big bang nucleosynthesis: Present status. Reviews of Modern Physics, 88(1):015004, 2016.
  21. S. Eidelman et al. Review of particle physics. Particle Data Group. Phys. Lett. B, 592(1-4):1, 2004. doi: 10.1016/j.physletb.2004.06.001.
  22. In the realm of the hubble tension—a review of solutions. Classical and Quantum Gravity, 38(15):153001, 2021.
  23. Bounds on very low reheating scenarios after Planck. Phys. Rev. D, 92(12):123534, 2015. doi: 10.1103/PhysRevD.92.123534.
  24. On the fate of the Standard Model at finite temperature. JHEP, 05:050, 2016. doi: 10.1007/JHEP05(2016)050.
  25. Lars Bergström. Nonbaryonic dark matter: Observational evidence and detection methods. Rept. Prog. Phys., 63:793, 2000. doi: 10.1088/0034-4885/63/5/2r3.
  26. Particle dark matter: Evidence, candidates and constraints. Phys. Rept., 405:279–390, 2005. doi: 10.1016/j.physrep.2004.08.031.
  27. Jonathan L. Feng. Dark Matter Candidates from Particle Physics and Methods of Detection. Ann. Rev. Astron. Astrophys., 48:495–545, 2010. doi: 10.1146/annurev-astro-082708-101659.
  28. Dark matter: A primer. Advances in Astronomy, 2011:1–22, 2011.
  29. Annika HG Peter. Dark matter: a brief review. arXiv preprint arXiv:1201.3942, 2012.
  30. History of dark matter. Rev. Mod. Phys., 90(4):045002, 2018. doi: 10.1103/RevModPhys.90.045002.
  31. Dark matter, dark energy, and alternate models: A review. Advances in Space Research, 60(1):166–186, 2017.
  32. A new era in the search for dark matter. Nature, 562(7725):51–56, 2018.
  33. A Arbey and F Mahmoudi. Dark matter and the early universe: a review. Progress in Particle and Nuclear Physics, 119:103865, 2021.
  34. Inflation dynamics and reheating. Reviews of Modern Physics, 78(2):537, 2006.
  35. Reheating in Inflationary Cosmology: Theory and Applications. Ann. Rev. Nucl. Part. Sci., 60:27–51, 2010. doi: 10.1146/annurev.nucl.012809.104511.
  36. The first three seconds: a review of possible expansion histories of the early universe. arXiv preprint arXiv:2006.16182, 2020.
  37. Andrei D Linde. Phase transitions in gauge theories and cosmology. Reports on Progress in Physics, 42(3):389, 1979.
  38. Gravitational waves from phase transitions at the electroweak scale and beyond. Physical Review D, 75(4):043507, 2007.
  39. Phase transitions in the early and present universe. Annu. Rev. Nucl. Part. Sci., 56:441–500, 2006.
  40. David J Weir. Gravitational waves from a first-order electroweak phase transition: a brief review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2114):20170126, 2018.
  41. Review of cosmic phase transitions: their significance and experimental signatures. Reports on Progress in Physics, 82(7):076901, 2019.
  42. Detecting gravitational waves from cosmological phase transitions with lisa: an update. Journal of Cosmology and Astroparticle Physics, 2020(03):024, 2020a.
  43. J. Aasi et al. Advanced LIGO. Class. Quant. Grav., 32:074001, 2015. doi: 10.1088/0264-9381/32/7/074001.
  44. B. P. Abbott et al. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Phys. Rev. Lett., 116(13):131103, 2016b. doi: 10.1103/PhysRevLett.116.131103.
  45. Aaron Buikema et al. Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Phys. Rev. D, 102(6):062003, 2020. doi: 10.1103/PhysRevD.102.062003.
  46. M. Tse et al. Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Phys. Rev. Lett., 123(23):231107, 2019. doi: 10.1103/PhysRevLett.123.231107.
  47. F. Acernese et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quant. Grav., 32(2):024001, 2015. doi: 10.1088/0264-9381/32/2/024001.
  48. F. Acernese et al. Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Phys. Rev. Lett., 123(23):231108, 2019. doi: 10.1103/PhysRevLett.123.231108.
  49. T. Akutsu et al. KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector. Nature Astron., 3(1):35–40, 2019. doi: 10.1038/s41550-018-0658-y.
  50. Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D, 88(4):043007, 2013. doi: 10.1103/PhysRevD.88.043007.
  51. David Reitze et al. Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO. Bull. Am. Astron. Soc., 51(7):035, 2019.
  52. Pau Amaro-Seoane et al. Laser Interferometer Space Antenna. 2 2017.
  53. Alberto Sesana et al. Unveiling the gravitational universe at μ𝜇\muitalic_μ-Hz frequencies. Exper. Astron., 51(3):1333–1383, 2021. doi: 10.1007/s10686-021-09709-9.
  54. Seiji Kawamura. Primordial gravitational wave and DECIGO. PoS, KMI2019:019, 2019. doi: 10.22323/1.356.0019.
  55. Bending of light by gravity waves. Astrophys. J., 484:545–554, 1997. doi: 10.1086/304357.
  56. A. G. A. Brown et al. Gaia Data Release 2: Summary of the contents and survey properties. Astron. Astrophys., 616:A1, 2018. doi: 10.1051/0004-6361/201833051.
  57. Céline Boehm et al. Theia: Faint objects in motion or the new astrometry frontier. 7 2017.
  58. Astrometric Effects of a Stochastic Gravitational Wave Background. Phys. Rev. D, 83:024024, 2011. doi: 10.1103/PhysRevD.83.024024.
  59. Astrometric Search Method for Individually Resolvable Gravitational Wave Sources with Gaia. Phys. Rev. Lett., 119(26):261102, 2017. doi: 10.1103/PhysRevLett.119.261102.
  60. Astrometric Effects of Gravitational Wave Backgrounds with non-Einsteinian Polarizations. Phys. Rev. D, 97(12):124058, 2018. doi: 10.1103/PhysRevD.97.124058.
  61. Astrometric effects of gravitational wave backgrounds with nonluminal propagation speeds. Phys. Rev. D, 101(2):024038, 2020. doi: 10.1103/PhysRevD.101.024038.
  62. Exploring the Early Universe with Gaia and THEIA. 4 2021.
  63. Asteroids for μ𝜇\muitalic_μHz gravitational-wave detection. Phys. Rev. D, 105(10):103018, 2022. doi: 10.1103/PhysRevD.105.103018.
  64. Dissecting Stochastic Gravitational Wave Background with Astrometry. 12 2023.
  65. Sergei A. Klioner. Gaia-like astrometry and gravitational waves. Class. Quant. Grav., 35(4):045005, 2018. doi: 10.1088/1361-6382/aa9f57.
  66. Gravitational Wave Detection with Photometric Surveys. Phys. Rev. D, 103(8):084007, 2021. doi: 10.1103/PhysRevD.103.084007.
  67. Constraining the stochastic gravitational wave background with photometric surveys. Phys. Rev. D, 106(8):084006, 2022. doi: 10.1103/PhysRevD.106.084006.
  68. J. Antoniadis et al. The second data release from the European Pulsar Timing Array - I. The dataset and timing analysis. Astron. Astrophys., 678:A48, 2023a. doi: 10.1051/0004-6361/202346841.
  69. Gabriella Agazie et al. The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars. Astrophys. J. Lett., 951(1):L9, 2023a. doi: 10.3847/2041-8213/acda9a.
  70. Andrew Zic et al. The Parkes Pulsar Timing Array Third Data Release. 6 2023.
  71. A. Weltman et al. Fundamental physics with the Square Kilometre Array. Publ. Astron. Soc. Austral., 37:e002, 2020. doi: 10.1017/pasa.2019.42.
  72. Detecting nanohertz gravitational waves with pulsar timing arrays. 9 2015.
  73. Sarah Burke-Spolaor et al. The Astrophysics of Nanohertz Gravitational Waves. Astron. Astrophys. Rev., 27(1):5, 2019. doi: 10.1007/s00159-019-0115-7.
  74. Pravin Kumar Dahal. Review of Pulsar Timing Array for Gravitational Wave Research. J. Astrophys. Astron., 41(1):8, 2020. doi: 10.1007/s12036-020-9625-y.
  75. MV Sazhin. Opportunities for detecting ultralong gravitational waves. Sov. Astron, 22:36–38, 1978.
  76. Nancy Aggarwal et al. Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies. Living Rev. Rel., 24(1):4, 2021. doi: 10.1007/s41114-021-00032-5.
  77. G. Hobbs et al. The international pulsar timing array project: using pulsars as a gravitational wave detector. Class. Quant. Grav., 27:084013, 2010. doi: 10.1088/0264-9381/27/8/084013.
  78. Seiji Kawamura et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO. 6 2020.
  79. Michele Maggiore et al. Science Case for the Einstein Telescope. JCAP, 03:050, 2020. doi: 10.1088/1475-7516/2020/03/050.
  80. Michele Maggiore. Gravitational waves: Volume 1: Theory and experiments. OUP Oxford, 2007.
  81. A review of gravitational wave detectors. Ann. Rev. Nucl. Part. Sci., 47:111–156, 1997. doi: 10.1146/annurev.nucl.47.1.111.
  82. P. Aufmuth and K. Danzmann. Gravitational wave detectors. New J. Phys., 7:202, 2005. doi: 10.1088/1367-2630/7/1/202.
  83. Detection methods for stochastic gravitational-wave backgrounds: a unified treatment. Living Rev. Rel., 20(1):2, 2017. doi: 10.1007/s41114-017-0004-1.
  84. RW Hellings and GS Downs. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. The Astrophysical Journal, 265:L39–L42, 1983.
  85. Pratik Tarafdar et al. The Indian Pulsar Timing Array: First data release. Publ. Astron. Soc. Austral., 39:e053, 2022. doi: 10.1017/pasa.2022.46.
  86. Albert A Michelson. Art. xxi.–the relative motion of the earth and the luminiferous ether. American Journal of Science (1880-1910), 22(128):120, 1881.
  87. Precision big bang nucleosynthesis with improved Helium-4 predictions. Phys. Rept., 754:1–66, 2018. doi: 10.1016/j.physrep.2018.04.005.
  88. The Quest for B Modes from Inflationary Gravitational Waves. Ann. Rev. Astron. Astrophys., 54:227–269, 2016. doi: 10.1146/annurev-astro-081915-023433.
  89. Paul D. Lasky et al. Gravitational-wave cosmology across 29 decades in frequency. Phys. Rev. X, 6(1):011035, 2016. doi: 10.1103/PhysRevX.6.011035.
  90. Gravitational Waves as a Big Bang Thermometer. JCAP, 03:054, 2021. doi: 10.1088/1475-7516/2021/03/054.
  91. Farid F Abraham. Homogeneous nucleation theory, volume 263. Elsevier, 1974.
  92. Sidney Coleman. Fate of the false vacuum: Semiclassical theory. Physical Review D, 15(10):2929, 1977.
  93. Fate of the false vacuum. ii. first quantum corrections. Physical Review D, 16(6):1762, 1977.
  94. Andrei D Linde. Fate of the false vacuum at finite temperature: theory and applications. Phys. Lett., B, 100(1):37–40, 1981.
  95. Dynamical Axions and Gravitational Waves. JHEP, 07:146, 2019a. doi: 10.1007/JHEP07(2019)146.
  96. Properties of the deconfining phase transition in SU(N) gauge theories. JHEP, 02:033, 2005. doi: 10.1088/1126-6708/2005/02/033.
  97. Continuum Thermodynamics of the GluoNcsubscript𝑁𝑐N_{c}italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT Plasma. Phys. Rev. D, 82:114505, 2010. doi: 10.1103/PhysRevD.82.114505.
  98. Falsifying Pati-Salam models with LIGO. 7 2023a.
  99. Self-consistent radiative corrections to false vacuum decay. J. Phys. Conf. Ser., 873(1):012041, 2017. doi: 10.1088/1742-6596/873/1/012041.
  100. The Electroweak phase transition: A Nonperturbative analysis. Nucl. Phys. B, 466:189–258, 1996a. doi: 10.1016/0550-3213(96)00052-1.
  101. Is there a  hot electroweak phase transition at mH≳mWgreater-than-or-equivalent-tosubscript𝑚𝐻subscript𝑚𝑊m_{H}\gtrsim m_{W}italic_m start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ≳ italic_m start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT? Phys. Rev. Lett., 77:2887–2890, 1996b. doi: 10.1103/PhysRevLett.77.2887.
  102. A Nonperturbative analysis of the finite T phase transition in SU(2) x U(1) electroweak theory. Nucl. Phys., B493:413–438, 1997. doi: 10.1016/S0550-3213(97)00164-8.
  103. Endpoint of the hot electroweak phase transition. Phys. Rev. Lett., 82:21–24, 1999. doi: 10.1103/PhysRevLett.82.21.
  104. Standard model cross-over on the lattice. Phys. Rev. D, 93(2):025003, 2016. doi: 10.1103/PhysRevD.93.025003.
  105. The Order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature, 443:675–678, 2006. doi: 10.1038/nature05120.
  106. Tanmoy Bhattacharya et al. QCD Phase Transition with Chiral Quarks and Physical Quark Masses. Phys. Rev. Lett., 113(8):082001, 2014. doi: 10.1103/PhysRevLett.113.082001.
  107. A strong electroweak phase transition in the 2HDM after LHC8. JHEP, 10:029, 2013. doi: 10.1007/JHEP10(2013)029.
  108. Strong First Order Electroweak Phase Transition in the CP-Conserving 2HDM Revisited. JHEP, 02:121, 2017. doi: 10.1007/JHEP02(2017)121.
  109. Hierarchical versus degenerate 2HDM: The LHC run 1 legacy at the onset of run 2. Phys. Rev. D, 93(11):115033, 2016. doi: 10.1103/PhysRevD.93.115033.
  110. A Second Higgs Doublet in the Early Universe: Baryogenesis and Gravitational Waves. JCAP, 05:052, 2017a. doi: 10.1088/1475-7516/2017/05/052.
  111. A new insight into the phase transition in the early Universe with two Higgs doublets. JHEP, 05:151, 2018. doi: 10.1007/JHEP05(2018)151.
  112. The Higgs Vacuum Uplifted: Revisiting the Electroweak Phase Transition with a Second Higgs Doublet. JHEP, 12:086, 2017b. doi: 10.1007/JHEP12(2017)086.
  113. Nonperturbative Analysis of the Electroweak Phase Transition in the Two Higgs Doublet Model. Phys. Rev. Lett., 121(19):191802, 2018. doi: 10.1103/PhysRevLett.121.191802.
  114. On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model. JHEP, 06:075, 2019. doi: 10.1007/JHEP06(2019)075.
  115. Gravitational wave and collider signals in complex two-Higgs doublet model with dynamical CP-violation at finite temperature. Phys. Rev. D, 101(1):015015, 2020a. doi: 10.1103/PhysRevD.101.015015.
  116. Strong first order electroweak phase transition in 2HDM confronting future Z & Higgs factories. JHEP, 04:219, 2021. doi: 10.1007/JHEP04(2021)219.
  117. Multi-TeV signals of baryogenesis in a Higgs troika model. Phys. Rev. D, 104(1):015024, 2021. doi: 10.1103/PhysRevD.104.015024.
  118. Fate of electroweak symmetry in the early Universe: Non-restoration and trapped vacua in the N2HDM. JCAP, 06:018, 2021. doi: 10.1088/1475-7516/2021/06/018.
  119. Phase transition gravitational waves from pseudo-Nambu-Goldstone dark matter and two Higgs doublets. JHEP, 05:160, 2021. doi: 10.1007/JHEP05(2021)160.
  120. Possibility of a multi-step electroweak phase transition in the two-Higgs doublet models. PTEP, 2022(6):063B05, 2022. doi: 10.1093/ptep/ptac068.
  121. Electroweak phase transition in the 2HDM: Collider and gravitational wave complementarity. Phys. Rev. D, 105(9):095041, 2022. doi: 10.1103/PhysRevD.105.095041.
  122. Dual electroweak phase transition in the two-Higgs-doublet model with the S3 discrete symmetry. Phys. Rev. D, 107(3):035020, 2023. doi: 10.1103/PhysRevD.107.035020.
  123. The trap in the early Universe: impact on the interplay between gravitational waves and LHC physics in the 2HDM. JCAP, 03:031, 2023a. doi: 10.1088/1475-7516/2023/03/031.
  124. Two Higgs doublets, effective interactions and a strong first-order electroweak phase transition. JHEP, 08:091, 2022. doi: 10.1007/JHEP08(2022)091.
  125. The flavourful present and future of 2HDMs at the collider energy frontier. JHEP, 11:139, 2022. doi: 10.1007/JHEP11(2022)139.
  126. First shot of the smoking gun: probing the electroweak phase transition in the 2HDM with novel searches for A→Z⁢H→𝐴𝑍𝐻A\to ZHitalic_A → italic_Z italic_H in ℓ+⁢ℓ−⁢t⁢t¯superscriptℓsuperscriptℓ𝑡¯𝑡\ell^{+}\ell^{-}t\bar{t}roman_ℓ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_t over¯ start_ARG italic_t end_ARG and ν⁢ν⁢b⁢b¯𝜈𝜈𝑏¯𝑏\nu\nu b\bar{b}italic_ν italic_ν italic_b over¯ start_ARG italic_b end_ARG final states. 9 2023b.
  127. Gravitational waves, bubble profile, and baryon asymmetry in the complex 2HDM. Phys. Rev. D, 108(7):075010, 2023. doi: 10.1103/PhysRevD.108.075010.
  128. The Electroweak Phase Transition in the Inert Doublet Model. JCAP, 07:028, 2015a. doi: 10.1088/1475-7516/2015/07/028.
  129. Exploring inert dark matter blind spots with gravitational wave signatures. Phys. Rev. D, 98(9):095022, 2018. doi: 10.1103/PhysRevD.98.095022.
  130. Gravitational wave signatures from an extended inert doublet dark matter model. JCAP, 10:062, 2019. doi: 10.1088/1475-7516/2019/10/062.
  131. Dark matter and nature of electroweak phase transition with an inert doublet. JCAP, 09:011, 2021. doi: 10.1088/1475-7516/2021/09/011.
  132. Multi-step phase transitions and gravitational waves in the inert doublet model. JCAP, 12:025, 2022. doi: 10.1088/1475-7516/2022/12/025.
  133. Gravitational Wave Signatures from First-Order Phase Transitions in an Extended Inert Doublet Dark Matter Model. Springer Proc. Phys., 277:73–77, 2022. doi: 10.1007/978-981-19-2354-8˙13.
  134. Bubble wall velocity during electroweak phase transition in the inert doublet model. Phys. Rev. D, 107(9):095005, 2023. doi: 10.1103/PhysRevD.107.095005.
  135. Minimal Inert Doublet Benchmark for Dark Matter and the Baryon Asymmetry. 7 2023.
  136. Opening the window for electroweak baryogenesis. Phys. Lett. B, 380:81–91, 1996. doi: 10.1016/0370-2693(96)00475-3.
  137. J. R. Espinosa. Dominant two loop corrections to the MSSM finite temperature effective potential. Nucl. Phys. B, 475:273–292, 1996. doi: 10.1016/0550-3213(96)00297-0.
  138. A Light stop and electroweak baryogenesis. Phys. Lett. B, 386:183–188, 1996. doi: 10.1016/0370-2693(96)00921-5.
  139. Supersymmetric electroweak phase transition: Beyond perturbation theory. Nucl. Phys. B, 482:73–91, 1996. doi: 10.1016/S0550-3213(96)00519-6.
  140. Marta Losada. High temperature dimensional reduction of the MSSM and other multiscalar models. Phys. Rev. D, 56:2893–2913, 1997. doi: 10.1103/PhysRevD.56.2893.
  141. M. Laine. Effective theories of MSSM at high temperature. Nucl. Phys. B, 481:43–84, 1996. doi: 10.1016/S0550-3213(96)90121-2. [Erratum: Nucl.Phys.B 548, 637–638 (1999)].
  142. The Two loop MSSM finite temperature effective potential with stop condensation. Nucl. Phys. B, 497:387–414, 1997. doi: 10.1016/S0550-3213(97)00252-6.
  143. B. de Carlos and J. R. Espinosa. The Baryogenesis window in the MSSM. Nucl. Phys. B, 503:24–54, 1997. doi: 10.1016/S0550-3213(97)00437-9.
  144. Supersymmetric electroweak phase transition: Baryogenesis versus experimental constraints. Phys. Rev. Lett., 81:3315–3318, 1998. doi: 10.1103/PhysRevLett.81.3315.
  145. Marta Losada. The Two loop finite temperature effective potential of the MSSM and baryogenesis. Nucl. Phys. B, 537:3–31, 1999. doi: 10.1016/S0550-3213(98)00563-X.
  146. M. Laine and K. Rummukainen. Two Higgs doublet dynamics at the electroweak phase transition: A Nonperturbative study. Nucl. Phys. B, 597:23–69, 2001. doi: 10.1016/S0550-3213(00)00736-7.
  147. The Baryogenesis Window in the MSSM. Nucl. Phys. B, 812:243–263, 2009. doi: 10.1016/j.nuclphysb.2008.12.014.
  148. The Light Stop Scenario from Gauge Mediation. JHEP, 04:137, 2012. doi: 10.1007/JHEP04(2012)137.
  149. MSSM Electroweak Baryogenesis and LHC Data. JHEP, 02:001, 2013. doi: 10.1007/JHEP02(2013)001.
  150. 125 GeV Higgs boson and electroweak phase transition model classes. Phys. Rev. D, 87(2):023509, 2013. doi: 10.1103/PhysRevD.87.023509.
  151. On the Higgs Fit and Electroweak Phase Transition. JHEP, 03:164, 2013. doi: 10.1007/JHEP03(2013)164.
  152. Lattice study of an electroweak phase transition at mh≃similar-to-or-equalssubscript𝑚ℎabsentm_{h}\simeqitalic_m start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT ≃ 126 GeV. JCAP, 01:011, 2013. doi: 10.1088/1475-7516/2013/01/011.
  153. Light Stop Mass Limits from Higgs Rate Measurements in the MSSM: Is MSSM Electroweak Baryogenesis Still Alive After All? JHEP, 04:143, 2016. doi: 10.1007/JHEP04(2016)143.
  154. Stepping Into Electroweak Symmetry Breaking: Phase Transitions and Higgs Phenomenology. Phys. Rev. D, 88:035013, 2013. doi: 10.1103/PhysRevD.88.035013.
  155. Gravitational wave and collider probes of a triplet Higgs sector with a low cutoff. Eur. Phys. J. C, 79(2):156, 2019. doi: 10.1140/epjc/s10052-019-6655-1.
  156. Nucleation is more than critical: A case study of the electroweak phase transition in the NMSSM. JHEP, 03:055, 2021. doi: 10.1007/JHEP03(2021)055.
  157. Electroweak Phase Transition in an Inert Complex Triplet Model. Phys. Rev. D, 103(7):075012, 2021. doi: 10.1103/PhysRevD.103.075012.
  158. Impact of a complex singlet: Electroweak baryogenesis and dark matter. Phys. Rev. D, 93(6):065032, 2016. doi: 10.1103/PhysRevD.93.065032.
  159. Standard Model with a Complex Scalar Singlet: Cosmological Implications and Theoretical Considerations. Phys. Rev. D, 97(1):015005, 2018. doi: 10.1103/PhysRevD.97.015005.
  160. Gravitational Waves from Phase Transitions in Models with Charged Singlets. Phys. Lett. B, 789:119–126, 2019. doi: 10.1016/j.physletb.2018.12.013.
  161. Complementarity of the future e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT colliders and gravitational waves in the probe of complex singlet extension to the standard model. Phys. Rev. D, 101(7):075047, 2020a. doi: 10.1103/PhysRevD.101.075047.
  162. Electroweak phase transition in a complex singlet extension of the Standard Model with degenerate scalars. Phys. Lett. B, 823:136787, 2021. doi: 10.1016/j.physletb.2021.136787.
  163. Combining thermal resummation and gauge invariance for electroweak phase transition. JHEP, 11:047, 2022. doi: 10.1007/JHEP11(2022)047.
  164. J. R. Espinosa and M. Quiros. The Electroweak phase transition with a singlet. Phys. Lett. B, 305:98–105, 1993. doi: 10.1016/0370-2693(93)91111-Y.
  165. Singlet Higgs phenomenology and the electroweak phase transition. JHEP, 08:010, 2007. doi: 10.1088/1126-6708/2007/08/010.
  166. Electroweak Phase Transition and LHC Signatures in the Singlet Majoron Model. JHEP, 07:040, 2009. doi: 10.1088/1126-6708/2009/07/040.
  167. Electroweak baryogenesis and dark matter from a singlet Higgs. JCAP, 1301:012, 2013. doi: 10.1088/1475-7516/2013/01/012.
  168. Update on scalar singlet dark matter. Phys. Rev., D88:055025, 2013. doi: 10.1103/PhysRevD.92.039906,10.1103/PhysRevD.88.055025. [Erratum: Phys. Rev.D92,no.3,039906(2015)].
  169. Higgs Couplings and Electroweak Phase Transition. JHEP, 07:108, 2014. doi: 10.1007/JHEP07(2014)108.
  170. Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies. Phys. Rev. D, 91(3):035018, 2015. doi: 10.1103/PhysRevD.91.035018.
  171. Ville Vaskonen. Electroweak baryogenesis and gravitational waves from a real scalar singlet. 2016.
  172. Gravitational waves and Higgs boson couplings for exploring first order phase transition in the model with a singlet scalar field. 2016.
  173. Gravitational Wave Signals of Electroweak Phase Transition Triggered by Dark Matter. 2017.
  174. Toshinori Matsui. Gravitational waves from the first order electroweak phase transition in the Z3subscript𝑍3Z_{3}italic_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT symmetric singlet scalar model. EPJ Web Conf., 168:05001, 2018a. doi: 10.1051/epjconf/201816805001.
  175. Strong first order EWPT & strong gravitational waves in Z33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT-symmetric singlet scalar extension. JHEP, 02:115, 2018. doi: 10.1007/JHEP02(2018)115.
  176. Collider and Gravitational Wave Complementarity in Exploring the Singlet Extension of the Standard Model. JHEP, 04:052, 2019. doi: 10.1007/JHEP04(2019)052.
  177. Electroweak Phase Transition, Gravitational Waves and Dark Matter in Two Scalar Singlet Extension of The Standard Model. Eur. Phys. J. C, 79(4):360, 2019. doi: 10.1140/epjc/s10052-019-6881-6.
  178. Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model. JHEP, 02:183, 2019. doi: 10.1007/JHEP02(2019)183.
  179. Toshinori Matsui. Gravitational waves from the first order electroweak phase transition in theZ3subscript𝑍3Z_{3}italic_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT symmetric singlet scalar model. PoS, CORFU2017:092, 2018b. doi: 10.22323/1.318.0092.
  180. Gravitational waves from first-order electroweak phase transition in a model with light sgoldstinos. JHEP, 07:061, 2022. doi: 10.1007/JHEP07(2022)061.
  181. Baryogenesis and gravity waves from a UV-completed electroweak phase transition. Phys. Rev. D, 103(12):123529, 2021. doi: 10.1103/PhysRevD.103.123529.
  182. Multi-step phase transition and gravitational wave from general ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT scalar extensions. 12 2022.
  183. Cosmological phase transitions: from perturbative particle physics to gravitational waves. 5 2023b.
  184. First-order electroweak phase transition in the standard model with a low cutoff. Phys. Rev., D71:036001, 2005. doi: 10.1103/PhysRevD.71.036001.
  185. The Baryon asymmetry in the standard model with a low cut-off. JHEP, 02:026, 2005. doi: 10.1088/1126-6708/2005/02/026.
  186. Dynamics of Non-renormalizable Electroweak Symmetry Breaking. JHEP, 04:029, 2008. doi: 10.1088/1126-6708/2008/04/029.
  187. Effective field theory, electric dipole moments and electroweak baryogenesis. JHEP, 03:030, 2017. doi: 10.1007/JHEP03(2017)030.
  188. Electroweak Baryogenesis and the Standard Model Effective Field Theory. JHEP, 01:089, 2018. doi: 10.1007/JHEP01(2018)089.
  189. The role of leptons in electroweak baryogenesis. JHEP, 04:024, 2019. doi: 10.1007/JHEP04(2019)024.
  190. Signals of the electroweak phase transition at colliders and gravitational wave observatories. JHEP, 07:062, 2018. doi: 10.1007/JHEP07(2018)062.
  191. Electroweak Baryogenesis from Temperature-Varying Couplings. JHEP, 08:002, 2019a. doi: 10.1007/JHEP08(2019)002.
  192. Cosmological phase transitions: is effective field theory just a toy? JHEP, 03:280, 2021. doi: 10.1007/JHEP03(2021)280.
  193. Steven Weinberg. Gauge and Global Symmetries at High Temperature. Phys. Rev. D, 9:3357–3378, 1974. doi: 10.1103/PhysRevD.9.3357.
  194. Two stage phase transition in two Higgs models. Phys. Lett. B, 292:107–112, 1992. doi: 10.1016/0370-2693(92)90616-C.
  195. Baryon asymmetry from a two stage electroweak phase transition? Z. Phys. C, 64:105–110, 1994. doi: 10.1007/BF01557241.
  196. Color Breaking in the Early Universe. Phys. Rev. D, 88(1):015003, 2013. doi: 10.1103/PhysRevD.88.015003.
  197. Electroweak Baryogenesis from Exotic Electroweak Symmetry Breaking. Phys. Rev. D, 92(3):035012, 2015b. doi: 10.1103/PhysRevD.92.035012.
  198. Two-Step Electroweak Baryogenesis. Phys. Rev. D, 93:015013, 2016. doi: 10.1103/PhysRevD.93.015013.
  199. Color Breaking Baryogenesis. Phys. Rev. D, 97(12):123509, 2018. doi: 10.1103/PhysRevD.97.123509.
  200. Exotic Gravitational Wave Signatures from Simultaneous Phase Transitions. JHEP, 05:210, 2018. doi: 10.1007/JHEP05(2018)210.
  201. Multistep Strongly First Order Phase Transitions from New Fermions at the TeV Scale. Phys. Rev. D, 99(5):055023, 2019. doi: 10.1103/PhysRevD.99.055023.
  202. Electroweak phase transition in the real triplet extension of the SM: Dimensional reduction. Phys. Rev. D, 100(3):035002, 2019. doi: 10.1103/PhysRevD.100.035002.
  203. Multi-peaked signatures of primordial gravitational waves from multi-step electroweak phase transition. PoS, EPS-HEP2019:054, 2020. doi: 10.22323/1.364.0054.
  204. Probing multi-step electroweak phase transition with multi-peaked primordial gravitational waves spectra. JCAP, 04:036, 2020. doi: 10.1088/1475-7516/2020/04/036.
  205. Thermodynamics of a Two-Step Electroweak Phase Transition. Phys. Rev. Lett., 126(17):171802, 2021. doi: 10.1103/PhysRevLett.126.171802.
  206. Remarks on the Chiral Phase Transition in Chromodynamics. Phys. Rev. D, 29:338–341, 1984. doi: 10.1103/PhysRevD.29.338.
  207. The QCD critical end point in the PNJL model. EPL, 86(3):31001, 2009. doi: 10.1209/0295-5075/86/31001.
  208. F. Marquez and R. Zamora. Critical end point in a thermomagnetic nonlocal NJL model. Int. J. Mod. Phys. A, 32(26):1750162, 2017. doi: 10.1142/S0217751X17501627.
  209. Hagedorn bag-like model with a crossover transition meets lattice QCD. Phys. Rev. C, 99(4):045204, 2019. doi: 10.1103/PhysRevC.99.045204.
  210. Criticality of qcd in a holographic qcd model with critical end point. Chinese Physics C, 43(2):023105, 2019.
  211. The strange critical endpoint and isentropic trajectories in an extended PNJL model with eight Quark interactions. Eur. Phys. J. A, 56(8):214, 2020. doi: 10.1140/epja/s10050-020-00223-8.
  212. QCD phase structure from functional methods. Phys. Rev. D, 102(3):034027, 2020. doi: 10.1103/PhysRevD.102.034027.
  213. Chiral phase structure and critical end point in QCD. Phys. Lett. B, 820:136584, 2021. doi: 10.1016/j.physletb.2021.136584.
  214. Cosmology Meets Functional QCD: First-Order Cosmic QCD Transition Induced by Large Lepton Asymmetries. Phys. Rev. Lett., 128(13):131301, 2022. doi: 10.1103/PhysRevLett.128.131301.
  215. Sphaleron freeze-in baryogenesis with gravitational waves from the QCD transition. 9 2023.
  216. A. Bazavov et al. The QCD Equation of State to 𝒪⁢(μB6)𝒪superscriptsubscript𝜇𝐵6\mathcal{O}(\mu_{B}^{6})caligraphic_O ( italic_μ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT ) from Lattice QCD. Phys. Rev. D, 95(5):054504, 2017. doi: 10.1103/PhysRevD.95.054504.
  217. Heng-Tong Ding. New developments in lattice QCD on equilibrium physics and phase diagram. Nucl. Phys. A, 1005:121940, 2021. doi: 10.1016/j.nuclphysa.2020.121940.
  218. Hooman Davoudiasl. LIGO/Virgo Black Holes from a First Order Quark Confinement Phase Transition. Phys. Rev. Lett., 123(10):101102, 2019. doi: 10.1103/PhysRevLett.123.101102.
  219. Benedict von Harling and Geraldine Servant. QCD-induced Electroweak Phase Transition. JHEP, 01:159, 2018. doi: 10.1007/JHEP01(2018)159.
  220. Gravitational waves from dark Yang-Mills sectors. JHEP, 05:154, 2021. doi: 10.1007/JHEP05(2021)154.
  221. Fate of false vacua in holographic first-order phase transitions. JHEP, 12:200, 2020. doi: 10.1007/JHEP12(2020)200.
  222. Dark Holograms and Gravitational Waves. JHEP, 04:094, 2021. doi: 10.1007/JHEP04(2021)094.
  223. Testing the dark SU(N) Yang-Mills theory confined landscape: From the lattice to gravitational waves. Phys. Rev. D, 104(3):035005, 2021. doi: 10.1103/PhysRevD.104.035005.
  224. Bubble wall velocity beyond leading-log approximation in electroweak phase transition. 11 2020b.
  225. Dark confinement-deconfinement phase transition: a roadmap from Polyakov loop models to gravitational waves. JHEP, 09:060, 2021. doi: 10.1007/JHEP09(2021)060.
  226. Gravitational waves from dark SU(3) Yang-Mills theory. Phys. Rev. D, 107(3):036010, 2023. doi: 10.1103/PhysRevD.107.036010.
  227. Lepton asymmetry and the cosmic QCD transition. JCAP, 11:025, 2009. doi: 10.1088/1475-7516/2009/11/025. [Erratum: JCAP 10, E01 (2010)].
  228. Detection of gravitational waves from the QCD phase transition with pulsar timing arrays. Phys. Rev. D, 82:063511, 2010. doi: 10.1103/PhysRevD.82.063511.
  229. Cosmic QCD transition for large lepton flavor asymmetries. Phys. Rev. D, 105(12):123533, 2022. doi: 10.1103/PhysRevD.105.123533.
  230. Probing a classically conformal B-L model with gravitational waves. Phys. Rev. D, 95(1):015020, 2017a. doi: 10.1103/PhysRevD.95.015020.
  231. Gravitational wave imprint of new symmetry breaking. Chin. Phys. C, 44(12):123102, 2020. doi: 10.1088/1674-1137/abb4cb.
  232. Gravitational Waves from First-Order Phase Transitions: LIGO as a Window to Unexplored Seesaw Scales. JCAP, 02:021, 2019a. doi: 10.1088/1475-7516/2019/02/021.
  233. Probing the seesaw scale with gravitational waves. Phys. Rev. D, 98(6):063532, 2018. doi: 10.1103/PhysRevD.98.063532.
  234. Phase transition and vacuum stability in the classically conformal B–L model. Eur. Phys. J. C, 79(7):601, 2019. doi: 10.1140/epjc/s10052-019-7076-x.
  235. Cosmological implications of a B −-- L charged hidden scalar: leptogenesis and gravitational waves. Chin. Phys. C, 45(11):113104, 2021. doi: 10.1088/1674-1137/ac1e09.
  236. Gravitational waves from the minimal gauged U⁢(1)B−L𝑈subscript1𝐵𝐿U(1)_{B-L}italic_U ( 1 ) start_POSTSUBSCRIPT italic_B - italic_L end_POSTSUBSCRIPT model. Phys. Rev. D, 99(9):095039, 2019a. doi: 10.1103/PhysRevD.99.095039.
  237. Gravitational wave energy budget in strongly supercooled phase transitions. JCAP, 06:024, 2019b. doi: 10.1088/1475-7516/2019/06/024.
  238. Gravitational waves from breaking of an extra U⁢(1)𝑈1U(1)italic_U ( 1 ) in S⁢O⁢(10)𝑆𝑂10SO(10)italic_S italic_O ( 10 ) grand unification. 6 2020.
  239. Bartosz Fornal and Barmak Shams Es Haghi. Baryon and Lepton Number Violation from Gravitational Waves. Phys. Rev. D, 102(11):115037, 2020. doi: 10.1103/PhysRevD.102.115037.
  240. Prospects of gravitational waves in the minimal left-right symmetric model. JHEP, 03:267, 2021. doi: 10.1007/JHEP03(2021)267.
  241. Gravitational waves from first-order phase transitions in Majoron models of neutrino mass. JHEP, 10:193, 2021. doi: 10.1007/JHEP10(2021)193.
  242. Electroweak phase transition and gravitational waves in the type-II seesaw model. JHEP, 08:205, 2022. doi: 10.1007/JHEP08(2022)205.
  243. Gravitational waves from first order electroweak phase transition in models with the U(1)X𝑋{}_{X}start_FLOATSUBSCRIPT italic_X end_FLOATSUBSCRIPT gauge symmetry. JHEP, 06:088, 2018. doi: 10.1007/JHEP06(2018)088.
  244. Probing the gauge symmetry breaking of the early universe in 3-3-1 models and beyond by gravitational waves. Phys. Lett. B, 788:288–294, 2019. doi: 10.1016/j.physletb.2018.11.024.
  245. Gravitational Waves from a Pati-Salam Phase Transition. JHEP, 02:083, 2019b. doi: 10.1007/JHEP02(2019)083.
  246. Gravitational Waves as a Probe of Left-Right Symmetry Breaking. JCAP, 12:027, 2019b. doi: 10.1088/1475-7516/2019/12/027.
  247. Gravitational Waves from Pati-Salam Dynamics. Phys. Rev. D, 102(9):095025, 2020a. doi: 10.1103/PhysRevD.102.095025.
  248. Gravitational Imprints of Flavor Hierarchies. Phys. Rev. Lett., 124(17):171802, 2020. doi: 10.1103/PhysRevLett.124.171802.
  249. Bartosz Fornal. Gravitational Wave Signatures of Lepton Universality Violation. Phys. Rev. D, 103(1):015018, 2021. doi: 10.1103/PhysRevD.103.015018.
  250. Gravitational waves from minisplit SUSY. Phys. Rev. D, 104(11):115005, 2021. doi: 10.1103/PhysRevD.104.115005.
  251. Ripples in Spacetime from Broken Supersymmetry. JHEP, 21:184, 2020. doi: 10.1007/JHEP02(2021)184.
  252. Gravitational waves from electroweak phase transitions. Nucl. Phys. B, 631:342–368, 2002. doi: 10.1016/S0550-3213(02)00264-X.
  253. Gravitational Waves, baryon asymmetry of the universe and electric dipole moment in the CP-violating NMSSM. Chin. Phys. C, 42(9):093106, 2018. doi: 10.1088/1674-1137/42/9/093106. [Erratum: Chin.Phys.C 43, 129101 (2019)].
  254. Pedro Schwaller. Gravitational Waves from a Dark Phase Transition. Phys. Rev. Lett., 115(18):181101, 2015. doi: 10.1103/PhysRevLett.115.181101.
  255. Strong gravitational radiation from a simple dark matter model. JHEP, 05:190, 2019. doi: 10.1007/JHEP05(2019)190.
  256. Dark, Cold, and Noisy: Constraining Secluded Hidden Sectors with Gravitational Waves. JCAP, 07:007, 2019. doi: 10.1088/1475-7516/2019/07/007.
  257. Model Discrimination in Gravitational Wave spectra from Dark Phase Transitions. JHEP, 08:203, 2018. doi: 10.1007/JHEP08(2018)203.
  258. Baryogenesis From a Dark First-Order Phase Transition. JHEP, 04:042, 2020. doi: 10.1007/JHEP04(2020)042.
  259. Iason Baldes. Gravitational waves from the asymmetric-dark-matter generating phase transition. JCAP, 05:028, 2017. doi: 10.1088/1475-7516/2017/05/028.
  260. Solitosynthesis and Gravitational Waves. Phys. Rev. D, 101(8):085010, 2020a. doi: 10.1103/PhysRevD.101.085010.
  261. Asymmetric matter from a dark first-order phase transition. Phys. Rev. D, 107(5):055011, 2023. doi: 10.1103/PhysRevD.107.055011.
  262. Filtered pseudo-scalar dark matter and gravitational waves from first order phase transition. JCAP, 06:038, 2021. doi: 10.1088/1475-7516/2021/06/038.
  263. Sensitivity to dark sector scales from gravitational wave signatures. JHEP, 08:300, 2022. doi: 10.1007/JHEP08(2022)300.
  264. Observational prospects for gravitational waves from hidden or dark chiral phase transitions. Phys. Rev. D, 100(5):055025, 2019. doi: 10.1103/PhysRevD.100.055025.
  265. Gravitational waves from chiral phase transition in a conformally extended standard model. JCAP, 04:001, 2020. doi: 10.1088/1475-7516/2020/04/001.
  266. QCD baryogenesis. Phys. Rev. D, 101(5):055042, 2020b. doi: 10.1103/PhysRevD.101.055042.
  267. Gravitational Waves from First-Order Phase Transition in a Simple Axion-Like Particle Model. JCAP, 11:006, 2019. doi: 10.1088/1475-7516/2019/11/006.
  268. Peccei-Quinn Phase Transition at LIGO. JHEP, 04:195, 2020. doi: 10.1007/JHEP04(2020)195.
  269. Gravitational Waves from Supercool Axions. JHEP, 04:025, 2020. doi: 10.1007/JHEP04(2020)025.
  270. Yoichiro Nambu and G. Jona-Lasinio. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 1. Phys. Rev., 122:345–358, 1961a. doi: 10.1103/PhysRev.122.345.
  271. Yoichiro Nambu and G. Jona-Lasinio. Dynamical model of elementary particles based on an analogy with superconductivity. II. Phys. Rev., 124:246–254, 1961b. doi: 10.1103/PhysRev.124.246.
  272. S. P. Klevansky. The Nambu-Jona-Lasinio model of quantum chromodynamics. Rev. Mod. Phys., 64:649–708, 1992. doi: 10.1103/RevModPhys.64.649.
  273. Electroweak and Conformal Symmetry Breaking by a Strongly Coupled Hidden Sector. JHEP, 12:076, 2013. doi: 10.1007/JHEP12(2013)076.
  274. Polyakov loop modeling for hot QCD. Prog. Part. Nucl. Phys., 96:154–199, 2017. doi: 10.1016/j.ppnp.2017.05.002.
  275. Gravitational radiation from colliding vacuum bubbles. Phys. Rev., D45:4514–4535, 1992. doi: 10.1103/PhysRevD.45.4514.
  276. Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions. Phys. Rev. D, 47:4372–4391, 1993. doi: 10.1103/PhysRevD.47.4372.
  277. Mark Hindmarsh. Sound shell model for acoustic gravitational wave production at a first-order phase transition in the early Universe. Phys. Rev. Lett., 120(7):071301, 2018. doi: 10.1103/PhysRevLett.120.071301.
  278. Shocks in the Early Universe. Phys. Rev. Lett., 117(13):131301, 2016. doi: 10.1103/PhysRevLett.117.131301.
  279. Generation of gravitational waves from freely decaying turbulence. JCAP, 09:029, 2022. doi: 10.1088/1475-7516/2022/09/029.
  280. Shape of the acoustic gravitational wave power spectrum from a first order phase transition. Phys. Rev. D, 96(10):103520, 2017. doi: 10.1103/PhysRevD.96.103520. [Erratum: Phys.Rev.D 101, 089902 (2020)].
  281. Phase Transitions in an Expanding Universe: Stochastic Gravitational Waves in Standard and Non-Standard Histories. JCAP, 01:001, 2021. doi: 10.1088/1475-7516/2021/01/001.
  282. Vorticity, kinetic energy, and suppressed gravitational wave production in strong first order phase transitions. Phys. Rev. Lett., 125(2):021302, 2019. doi: 10.1103/PhysRevLett.125.021302.
  283. Graham White. Electroweak Baryogenesis (Second Edition): An introduction. IOP, 4 2022. ISBN 978-0-7503-3569-0, 978-0-7503-3570-6, 978-0-7503-3571-3. doi: 10.1088/978-0-7503-3571-3.
  284. Observational prospects for phase transitions at LISA: Fisher matrix analysis. JCAP, 10:039, 2021. doi: 10.1088/1475-7516/2021/10/039.
  285. Gravitational waves from first order cosmological phase transitions in the Sound Shell Model. JCAP, 12:062, 2019. doi: 10.1088/1475-7516/2019/12/062.
  286. Model-independent energy budget of cosmological first-order phase transitions—A sound argument to go beyond the bag model. JCAP, 07(07):057, 2020. doi: 10.1088/1475-7516/2020/07/057.
  287. Tuomas V. I. Tenkanen and Jorinde van de Vis. Speed of sound in cosmological phase transitions and effect on gravitational waves. JHEP, 08:302, 2022. doi: 10.1007/JHEP08(2022)302.
  288. Effect of density fluctuations on gravitational wave production in first-order phase transitions. JCAP, 12(12):019, 2021a. doi: 10.1088/1475-7516/2021/12/019.
  289. Electroweak Bubble Wall Speed Limit. JCAP, 05:025, 2017. doi: 10.1088/1475-7516/2017/05/025.
  290. Towards an all-orders calculation of the electroweak bubble wall velocity. JCAP, 03:009, 2021. doi: 10.1088/1475-7516/2021/03/009.
  291. Bubble wall velocities in local equilibrium. JCAP, 03(03):015, 2022. doi: 10.1088/1475-7516/2022/03/015.
  292. Novel Effects in Electroweak Breaking from a Hidden Sector. Phys. Rev. D, 76:076004, 2007. doi: 10.1103/PhysRevD.76.076004.
  293. Some Cosmological Implications of Hidden Sectors. Phys. Rev. D, 78:123528, 2008. doi: 10.1103/PhysRevD.78.123528.
  294. Cosmological Consequences of Nearly Conformal Dynamics at the TeV scale. JCAP, 12:009, 2011a. doi: 10.1088/1475-7516/2011/12/009.
  295. Natural Cold Baryogenesis from Strongly Interacting Electroweak Symmetry Breaking. JCAP, 07:024, 2011b. doi: 10.1088/1475-7516/2011/07/024.
  296. Geraldine Servant. Baryogenesis from Strong C⁢P𝐶𝑃CPitalic_C italic_P Violation and the QCD Axion. Phys. Rev. Lett., 113(17):171803, 2014. doi: 10.1103/PhysRevLett.113.171803.
  297. Sphaleron and critical bubble in the scale invariant two Higgs doublet model. Phys. Lett. B, 747:152–157, 2015. doi: 10.1016/j.physletb.2015.05.061.
  298. First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model. Phys. Rev. D, 92(4):045015, 2015. doi: 10.1103/PhysRevD.92.045015.
  299. Gravitational waves from colliding vacuum bubbles in gauge theories. Eur. Phys. J. C, 81(5):437, 2021. doi: 10.1140/epjc/s10052-021-09232-3. [Erratum: Eur.Phys.J.C 81, 1077 (2021)].
  300. Gravitational waves from bubble collisions and fluid motion in strongly supercooled phase transitions. Eur. Phys. J. C, 83(2):109, 2023. doi: 10.1140/epjc/s10052-023-11241-3.
  301. Paul H. Ginsparg. First Order and Second Order Phase Transitions in Gauge Theories at Finite Temperature. Nucl. Phys. B, 170:388–408, 1980. doi: 10.1016/0550-3213(80)90418-6.
  302. High-Temperature Yang-Mills Theories and Three-Dimensional Quantum Chromodynamics. Phys. Rev. D, 23:2305, 1981. doi: 10.1103/PhysRevD.23.2305.
  303. Sudhir Nadkarni. Dimensional Reduction in Hot QCD. Phys. Rev. D, 27:917, 1983. doi: 10.1103/PhysRevD.27.917.
  304. N. P. Landsman. Limitations to Dimensional Reduction at High Temperature. Nucl. Phys. B, 322:498–530, 1989. doi: 10.1016/0550-3213(89)90424-0.
  305. 3-D physics and the electroweak phase transition: Perturbation theory. Nucl. Phys. B, 425:67–109, 1994. doi: 10.1016/0550-3213(94)90173-2.
  306. Effective field theory approach to high temperature thermodynamics. Phys. Rev. D, 51:6990–7006, 1995. doi: 10.1103/PhysRevD.51.6990.
  307. Free energy of QCD at high temperature. Phys. Rev. D, 53:3421–3437, 1996. doi: 10.1103/PhysRevD.53.3421.
  308. Generic rules for high temperature dimensional reduction and their application to the standard model. Nucl. Phys. B, 458:90–136, 1996c. doi: 10.1016/0550-3213(95)00549-8.
  309. Gravitational waves and tadpole resummation: Efficient and easy convergence of finite temperature QFT. 11 2022.
  310. Towards the theory of the electroweak phase transition. Phys. Rev. D, 46:550–571, 1992a. doi: 10.1103/PhysRevD.46.550.
  311. On the phase transition in the scalar theory. Phys. Lett. B, 291:115–124, 1992. doi: 10.1016/0370-2693(92)90129-R.
  312. Corrections to the electroweak effective action at finite temperature. Phys. Rev. D, 48:4952–4962, 1993a. doi: 10.1103/PhysRevD.48.4952.
  313. On the nature of the electroweak phase transition. Phys. Lett. B, 314:206–216, 1993. doi: 10.1016/0370-2693(93)90450-V.
  314. Resummation methods at finite temperature: The Tadpole way. Phys. Rev. D, 48:4963–4973, 1993b. doi: 10.1103/PhysRevD.48.4963.
  315. Thermal Resummation and Phase Transitions. Eur. Phys. J. C, 78(9):787, 2018. doi: 10.1140/epjc/s10052-018-6268-0.
  316. Can electroweak bubble walls run away? JCAP, 0905:009, 2009. doi: 10.1088/1475-7516/2009/05/009.
  317. Wen-Yuan Ai. Logarithmically divergent friction on ultrarelativistic bubble walls. 8 2023.
  318. Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach. Phys. Rev. D, 77:124015, 2008. doi: 10.1103/PhysRevD.77.124015.
  319. Gravitational Wave Production by Collisions: More Bubbles. JCAP, 0809:022, 2008. doi: 10.1088/1475-7516/2008/09/022.
  320. General Properties of the Gravitational Wave Spectrum from Phase Transitions. Phys. Rev., D79:083519, 2009a. doi: 10.1103/PhysRevD.79.083519.
  321. Gravitational waves from bubble collisions: analytic derivation. Phys. Rev., D95(2):024009, 2017b. doi: 10.1103/PhysRevD.95.024009.
  322. Andreĭ Nikolaevich Kolmogorov. Turbulence: the legacy of AN Kolmogorov. Cambridge university press, 1995.
  323. Gravitational radiation from cosmological turbulence. Phys. Rev. D, 66:024030, 2002. doi: 10.1103/PhysRevD.66.024030.
  324. The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition. JCAP, 0912:024, 2009b. doi: 10.1088/1475-7516/2009/12/024.
  325. Andrei D. Linde. Infrared Problem in Thermodynamics of the Yang-Mills Gas. Phys. Lett. B, 96:289–292, 1980. doi: 10.1016/0370-2693(80)90769-8.
  326. Towards the theory of the electroweak phase transition. Physical Review D, 46(2):550, 1992b.
  327. First-order electroweak phase transitions: A nonperturbative update. Phys. Rev. D, 106(11):114507, 2022. doi: 10.1103/PhysRevD.106.114507.
  328. Radiative first-order phase transitions to next-to-next-to-leading order. Phys. Rev. D, 106(3):036012, 2022. doi: 10.1103/PhysRevD.106.036012.
  329. Theoretical uncertainties for cosmological first-order phase transitions. JHEP, 04:055, 2021. doi: 10.1007/JHEP04(2021)055.
  330. Oliver Gould and Tuomas V. I. Tenkanen. On the perturbative expansion at high temperature and implications for cosmological phase transitions. JHEP, 06:069, 2021. doi: 10.1007/JHEP06(2021)069.
  331. Phase diagram and thermal properties of strong-interaction matter. Phys. Rev. D, 93(9):094019, 2016. doi: 10.1103/PhysRevD.93.094019.
  332. Numerical simulations of acoustically generated gravitational waves at a first order phase transition. Phys. Rev., D92(12):123009, 2015. doi: 10.1103/PhysRevD.92.123009.
  333. Hillary L. Child and John T. Giblin, Jr. Gravitational Radiation from First-Order Phase Transitions. JCAP, 10:001, 2012. doi: 10.1088/1475-7516/2012/10/001.
  334. Gravitational waves from vacuum first-order phase transitions: from the envelope to the lattice. Phys. Rev. D, 97(12):123513, 2018. doi: 10.1103/PhysRevD.97.123513.
  335. Gravitational waves from vacuum first order phase transitions II: from thin to thick walls. Phys. Rev. D, 103(2):023531, 2021. doi: 10.1103/PhysRevD.103.023531.
  336. Gravitational waves from bubble dynamics: Beyond the Envelope. JCAP, 01:060, 2019. doi: 10.1088/1475-7516/2019/01/060.
  337. Thomas Konstandin. Gravitational radiation from a bulk flow model. JCAP, 03:047, 2018. doi: 10.1088/1475-7516/2018/03/047.
  338. Gravitational waves from first-order phase transitions: Ultra-supercooled transitions and the fate of relativistic shocks. JCAP, 10:033, 2019. doi: 10.1088/1475-7516/2019/10/033.
  339. A hybrid simulation of gravitational wave production in first-order phase transitions. JCAP, 04:014, 2021b. doi: 10.1088/1475-7516/2021/04/014.
  340. The Early Universe, volume 69. 1990. ISBN 978-0-201-62674-2. doi: 10.1201/9780429492860.
  341. A. Vilenkin and E. P. S. Shellard. Cosmic Strings and Other Topological Defects. Cambridge University Press, 7 2000a. ISBN 978-0-521-65476-0.
  342. Michele Maggiore. Gravitational Waves. Vol. 2: Astrophysics and Cosmology. Oxford University Press, 3 2018. ISBN 978-0-19-857089-9.
  343. Ken’ichi Saikawa. A review of gravitational waves from cosmic domain walls. Universe, 3(2):40, 2017. doi: 10.3390/universe3020040.
  344. GUTs, hybrid topological defects, and gravitational waves. Phys. Rev. D, 106(7):075030, 2022. doi: 10.1103/PhysRevD.106.075030.
  345. Cosmological Consequences of the Spontaneous Breakdown of Discrete Symmetry. Zh. Eksp. Teor. Fiz., 67:3–11, 1974.
  346. A. Vilenkin. Gravitational Field of Vacuum Domain Walls and Strings. Phys. Rev. D, 23:852–857, 1981a. doi: 10.1103/PhysRevD.23.852.
  347. Cosmology of Biased Discrete Symmetry Breaking. Phys. Rev. D, 39:1558, 1989. doi: 10.1103/PhysRevD.39.1558.
  348. Evading the cosmological domain wall problem. Phys. Rev. D, 55:5129–5135, 1997. doi: 10.1103/PhysRevD.55.5129.
  349. Testing clockwork axion with gravitational waves. JCAP, 05:049, 2021. doi: 10.1088/1475-7516/2021/05/049.
  350. Quantum Gravity Effects on Dark Matter and Gravitational Waves. 8 2023a.
  351. Nano-Hertz stochastic gravitational wave background from domain wall annihilation. 7 2023.
  352. Quantum Gravity Effects on Fermionic Dark Matter and Gravitational Waves. 11 2023b.
  353. On the estimation of gravitational wave spectrum from cosmic domain walls. JCAP, 02:031, 2014. doi: 10.1088/1475-7516/2014/02/031.
  354. Axion cosmology with long-lived domain walls. JCAP, 01:001, 2013. doi: 10.1088/1475-7516/2013/01/001.
  355. One-scale model for domain wall network evolution. Phys. Rev. D, 72:083506, 2005. doi: 10.1103/PhysRevD.72.083506.
  356. Chiara Caprini et al. Detecting gravitational waves from cosmological phase transitions with LISA: an update. JCAP, 03:024, 2020b. doi: 10.1088/1475-7516/2020/03/024.
  357. Gravitational waves from domain walls in Pulsar Timing Array datasets. JCAP, 02:001, 2023. doi: 10.1088/1475-7516/2023/02/001.
  358. Collapsing domain walls beyond Z2. Phys. Rev. D, 105(9):095013, 2022. doi: 10.1103/PhysRevD.105.095013.
  359. T.W.B. Kibble. Topology of Cosmic Domains and Strings. J. Phys. A, 9:1387–1398, 1976. doi: 10.1088/0305-4470/9/8/029.
  360. Holger Bech Nielsen and P. Olesen. Vortex Line Models for Dual Strings. Nucl. Phys., B61:45–61, 1973. doi: 10.1016/0550-3213(73)90350-7.
  361. Formation and Evolution of Cosmic Strings. Phys. Rev. D, 30:2036, 1984. doi: 10.1103/PhysRevD.30.2036.
  362. Gravitational Waves and Proton Decay: Complementary Windows into Grand Unified Theories. Phys. Rev. Lett., 126(2):021802, 2021a. doi: 10.1103/PhysRevLett.126.021802.
  363. Testing the Dark Confined Landscape: From Lattice to Gravitational Waves. 12 2020b.
  364. Cosmic F and D strings. JHEP, 06:013, 2004. doi: 10.1088/1126-6708/2004/06/013.
  365. Formation and evolution of cosmic D strings. JCAP, 0403:010, 2004. doi: 10.1088/1475-7516/2004/03/010.
  366. Joseph Polchinski. Introduction to cosmic F- and D-strings. In String theory: From gauge interactions to cosmology. Proceedings, NATO Advanced Study Institute, Cargese, France, June 7-19, 2004, pages 229–253, 2004.
  367. Collisions of cosmic F and D-strings. JHEP, 10:013, 2005. doi: 10.1088/1126-6708/2005/10/013.
  368. Scaling of multi-tension cosmic superstring networks. Phys. Rev., D71:103508, 2005. doi: 10.1103/PhysRevD.71.103508,10.1103/PhysRevD.71.129906. [Erratum: Phys. Rev.D71,129906(2005)].
  369. Strings in SO(10). Phys. Lett. B, 113:237–239, 1982a. doi: 10.1016/0370-2693(82)90829-2.
  370. Mark Hindmarsh. Cosmic strings: Dead again? In 1st International Conference on Particle Physics and the Early Universe, pages 420–422, 9 1997. doi: 10.1142/9789814447263˙0057.
  371. Numerical simulations of string networks in the Abelian Higgs model. Phys. Rev. Lett., 80:2277–2280, 1998. doi: 10.1103/PhysRevLett.80.2277.
  372. Decay of Cosmic String Loops Due to Particle Radiation. Phys. Rev. Lett., 122(20):201301, 2019. doi: 10.1103/PhysRevLett.122.201301.
  373. Loop decay in Abelian-Higgs string networks. Phys. Rev. D, 104(4):043519, 2021. doi: 10.1103/PhysRevD.104.043519.
  374. Nambu-Goto dynamics of field theory cosmic string loops. JCAP, 05:035, 2023. doi: 10.1088/1475-7516/2023/05/035.
  375. C. J. A. P. Martins and E. P. S. Shellard. Quantitative string evolution. Phys. Rev. D, 54:2535–2556, 1996. doi: 10.1103/PhysRevD.54.2535.
  376. C. J. A. P. Martins and E. P. S. Shellard. Extending the velocity dependent one scale string evolution model. Phys. Rev. D, 65:043514, 2002. doi: 10.1103/PhysRevD.65.043514.
  377. The number of cosmic string loops. Phys. Rev., D89(2):023512, 2014. doi: 10.1103/PhysRevD.89.023512.
  378. Stochastic gravitational wave background from smoothed cosmic string loops. Phys. Rev. D, 96(10):104046, 2017. doi: 10.1103/PhysRevD.96.104046.
  379. A. Vilenkin. Gravitational radiation from cosmic strings. Phys. Lett. B, 107:47–50, 1981b. doi: 10.1016/0370-2693(81)91144-8.
  380. Large parallel cosmic string simulations: New results on loop production. Phys. Rev. D, 83:083514, 2011a. doi: 10.1103/PhysRevD.83.083514.
  381. Pierre Auclair et al. Probing the gravitational wave background from cosmic strings with LISA. JCAP, 2004:034, 2020. doi: 10.1088/1475-7516/2020/04/034.
  382. L. Sousa and P. P. Avelino. Stochastic Gravitational Wave Background generated by Cosmic String Networks: Velocity-Dependent One-Scale model versus Scale-Invariant Evolution. Phys. Rev. D, 88(2):023516, 2013a. doi: 10.1103/PhysRevD.88.023516.
  383. Large parallel cosmic string simulations: New results on loop production. Phys. Rev., D83:083514, 2011b. doi: 10.1103/PhysRevD.83.083514.
  384. Cosmic string loop distribution on all length scales and at any redshift. JCAP, 10:003, 2010. doi: 10.1088/1475-7516/2010/10/003.
  385. Cosmological evolution of cosmic string loops. JCAP, 0702:023, 2007. doi: 10.1088/1475-7516/2007/02/023.
  386. Stochastic Gravitational Wave Background from Global Cosmic Strings. Phys. Dark Univ., 29:100604, 2020. doi: 10.1016/j.dark.2020.100604.
  387. Gravitational waves from global cosmic strings and cosmic archaeology. JHEP, 03:114, 2022. doi: 10.1007/JHEP03(2022)114.
  388. Gravitational waves from phase transitions and cosmic strings in neutrino mass models with multiple Majorons. 6 2023.
  389. Radiation of Goldstone Bosons From Cosmic Strings. Phys. Rev. D, 35:1138, 1987. doi: 10.1103/PhysRevD.35.1138.
  390. Recent perspectives on axion cosmology. In 1st International Heidelberg Conference on Dark Matter in Astro and Particle Physics, pages 554–579, 6 1997.
  391. Gravitational Radiation from Cosmic Strings. Phys. Rev., D31:3052, 1985a. doi: 10.1103/PhysRevD.31.3052.
  392. Gravitational radiation from cosmic strings. Phys. Rev. D, 45:1898–1912, 1992. doi: 10.1103/PhysRevD.45.1898.
  393. Primordial gravitational waves: A Probe of the very early universe. 1996.
  394. A Unified model for vortex string network evolution. Phys. Rev. Lett., 92:251601, 2004. doi: 10.1103/PhysRevLett.92.251601.
  395. C. J. A. P. Martins and M. M. P. V. P. Cabral. Physical and invariant models for defect network evolution. Phys. Rev. D, 93(4):043542, 2016. doi: 10.1103/PhysRevD.93.043542. [Addendum: Phys.Rev.D 93, 069902 (2016)].
  396. C. J. A. P. Martins. Scaling properties of cosmological axion strings. Phys. Lett. B, 788:147–151, 2019. doi: 10.1016/j.physletb.2018.11.031.
  397. J. R. C. C. C. Correia and C. J. A. P. Martins. Extending and Calibrating the Velocity dependent One-Scale model for Cosmic Strings with One Thousand Field Theory Simulations. Phys. Rev. D, 100(10):103517, 2019. doi: 10.1103/PhysRevD.100.103517.
  398. Beyond the Standard Models with Cosmic Strings. JCAP, 2007:032, 2020. doi: 10.1088/1475-7516/2020/07/032.
  399. Heavier W boson, dark matter, and gravitational waves from strings in an SO(10) axion model. Phys. Rev. D, 106(5):055009, 2022a. doi: 10.1103/PhysRevD.106.055009.
  400. Probing high scale seesaw and PBH generated dark matter via gravitational waves with multiple tilts. 8 2022.
  401. A predictive SO(10) model. JCAP, 12:009, 2022b. doi: 10.1088/1475-7516/2022/12/009.
  402. Imprint of PBH domination on gravitational waves generated by cosmic strings. Phys. Rev. D, 108(2):023531, 2023. doi: 10.1103/PhysRevD.108.023531.
  403. Scaling of cosmic string loops. Phys. Rev., D74:063527, 2006. doi: 10.1103/PhysRevD.74.063527.
  404. C. J. A. P. Martins and E. P. S. Shellard. Fractal properties and small-scale structure of cosmic string networks. Phys. Rev., D73:043515, 2006. doi: 10.1103/PhysRevD.73.043515.
  405. Cosmic string loops in the expanding Universe. Phys. Rev., D75:063521, 2007. doi: 10.1103/PhysRevD.75.063521.
  406. Gerard ’t Hooft. Magnetic Monopoles in Unified Gauge Theories. Nucl. Phys. B, 79:276–284, 1974. doi: 10.1016/0550-3213(74)90486-6.
  407. Alexander M. Polyakov. Particle Spectrum in the Quantum Field Theory. JETP Lett., 20:194–195, 1974.
  408. W. H. Zurek. Cosmological Experiments in Superfluid Helium? Nature, 317:505–508, 1985. doi: 10.1038/317505a0.
  409. Testing the Seesaw Mechanism and Leptogenesis with Gravitational Waves. Phys. Rev. Lett., 124(4):041804, 2020. doi: 10.1103/PhysRevLett.124.041804.
  410. Magnetic Monopoles in Grand Unified Theories. Phys. Rev. Lett., 45:1, 1980. doi: 10.1103/PhysRevLett.45.1.
  411. Cosmic Strings and Domains in Unified Theories. Nucl. Phys. B, 195:157–172, 1982. doi: 10.1016/0550-3213(82)90052-9.
  412. Alexander Vilenkin. Cosmological evolution of monopoles connected by strings. Nuclear Physics B, 196(2):240–258, 1982.
  413. Metastable cosmic strings. JCAP, 11:020, 2023. doi: 10.1088/1475-7516/2023/11/020.
  414. Gravitational radiation from monopoles connected by strings. Phys. Rev. D, 55:6054–6060, 1997. doi: 10.1103/PhysRevD.55.6054.
  415. Gravitational Waves from Broken Cosmic Strings: The Bursts and the Beads. Phys. Rev. D, 79:123519, 2009. doi: 10.1103/PhysRevD.79.123519.
  416. Stochastic gravitational-wave background from metastable cosmic strings. 7 2021.
  417. Steven Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley and Sons, New York, 1972. ISBN 978-0-471-92567-5, 978-0-471-92567-5.
  418. Cosmic strings and other topological defects. Cambridge University Press, 2000b.
  419. Walls Bounded by Strings. Phys. Rev. D, 26:435, 1982b. doi: 10.1103/PhysRevD.26.435.
  420. Decay of metastable topological defects. Phys. Rev. D, 47:2324–2342, 1993. doi: 10.1103/PhysRevD.47.2324.
  421. L. Sousa and P. P. Avelino. Stochastic gravitational wave background generated by cosmic string networks: Velocity-dependent one-scale model versus scale-invariant evolution. Physical Review D, 88(2), Jul 2013b. ISSN 1550-2368. doi: 10.1103/physrevd.88.023516. URL http://dx.doi.org/10.1103/PhysRevD.88.023516.
  422. Gravitational radiation from cosmic strings. Phys. Rev. D, 31:3052–3058, Jun 1985b. doi: 10.1103/PhysRevD.31.3052. URL https://link.aps.org/doi/10.1103/PhysRevD.31.3052.
  423. Alexander Vilenkin. Cosmic Strings and Domain Walls. Phys. Rept., 121:263–315, 1985. doi: 10.1016/0370-1573(85)90033-X.
  424. How efficient is the Langacker-Pi mechanism of monopole annihilation? Phys. Rev. Lett., 69:241–244, 1992. doi: 10.1103/PhysRevLett.69.241.
  425. Gravitational wave background from hybrid topological defects. Phys. Rev. Lett., 77:2879–2882, 1996. doi: 10.1103/PhysRevLett.77.2879.
  426. John Preskill. Cosmological Production of Superheavy Magnetic Monopoles. Phys. Rev. Lett., 43:1365, 1979. doi: 10.1103/PhysRevLett.43.1365.
  427. Gravitational clumping and the annihilation of monopoles. Physical Review D, 23(4):867, 1981.
  428. N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641:A6, 2020b. doi: 10.1051/0004-6361/201833910.
  429. Probing the pre-BBN universe with gravitational waves from cosmic strings. JHEP, 01:081, 2019. doi: 10.1007/JHEP01(2019)081.
  430. Cosmic Archaeology with Gravitational Waves from Cosmic Strings. Phys. Rev., D97(12):123505, 2018. doi: 10.1103/PhysRevD.97.123505.
  431. Fingerprint of low-scale leptogenesis in the primordial gravitational-wave spectrum. Phys. Rev. Res., 2(4):043321, 2020. doi: 10.1103/PhysRevResearch.2.043321.
  432. Gravitational Wave Bursts as Harbingers of Cosmic Strings Diluted by Inflation. Phys. Rev. Lett., 125(21):211302, 2020. doi: 10.1103/PhysRevLett.125.211302.
  433. Y. Akrami et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys., 641:A10, 2020a. doi: 10.1051/0004-6361/201833887.
  434. Signature of inflation in the stochastic gravitational wave background generated by cosmic string networks. Phys. Rev., D98(12):123505, 2018. doi: 10.1103/PhysRevD.98.123505.
  435. Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints. Phys. Rev., D73:105001, 2006. doi: 10.1103/PhysRevD.73.105001.
  436. Stochastic gravitational waves from cosmic string loops in scaling. JCAP, 1712:027, 2017. doi: 10.1088/1475-7516/2017/12/027.
  437. M. Fukugita and T. Yanagida. Baryogenesis Without Grand Unification. Phys. Lett. B, 174:45–47, 1986. doi: 10.1016/0370-2693(86)91126-3.
  438. M. A. Luty. Baryogenesis via leptogenesis. Phys. Rev. D, 45:455–465, 1992. doi: 10.1103/PhysRevD.45.455.
  439. Apostolos Pilaftsis. CP violation and baryogenesis due to heavy Majorana neutrinos. Phys. Rev. D, 56:5431–5451, 1997. doi: 10.1103/PhysRevD.56.5431.
  440. Peter Minkowski. μ→e⁢γ→𝜇𝑒𝛾\mu\to e\gammaitalic_μ → italic_e italic_γ at a Rate of One Out of 109superscript10910^{9}10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT Muon Decays? Phys. Lett. B, 67:421–428, 1977. doi: 10.1016/0370-2693(77)90435-X.
  441. Tsutomu Yanagida. Horizontal gauge symmetry and masses of neutrinos. Conf. Proc. C, 7902131:95–99, 1979a.
  442. Tsutomu Yanagida. Horizontal Symmetry and Mass of the Top Quark. Phys. Rev. D, 20:2986, 1979b. doi: 10.1103/PhysRevD.20.2986.
  443. Complex Spinors and Unified Theories. Conf. Proc. C, 790927:315–321, 1979.
  444. Neutrino Mass and Spontaneous Parity Nonconservation. Phys. Rev. Lett., 44:912, 1980. doi: 10.1103/PhysRevLett.44.912.
  445. J. Schechter and J. W. F. Valle. Neutrino Masses in SU(2) x U(1) Theories. Phys. Rev. D, 22:2227, 1980. doi: 10.1103/PhysRevD.22.2227.
  446. J. Schechter and J. W. F. Valle. Neutrino Decay and Spontaneous Violation of Lepton Number. Phys. Rev. D, 25:774, 1982. doi: 10.1103/PhysRevD.25.774.
  447. Imprint of the Seesaw Mechanism on Feebly Interacting Dark Matter and the Baryon Asymmetry. Phys. Rev. Lett., 127(23):231801, 2021. doi: 10.1103/PhysRevLett.127.231801.
  448. Neutrino mass and asymmetric dark matter: study with inert Higgs doublet and high scale validity. JCAP, 03:037, 2021. doi: 10.1088/1475-7516/2021/03/037.
  449. Symmetry origin of Baryon Asymmetry, Dark Matter and Neutrino Mass. 5 2021.
  450. Testing the dark and visible sides of the Seesaw. 12 2023.
  451. On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B, 155:36, 1985. doi: 10.1016/0370-2693(85)91028-7.
  452. Luis Bento. Sphaleron relaxation temperatures. JCAP, 11:002, 2003. doi: 10.1088/1475-7516/2003/11/002.
  453. Sphaleron Rate in the Minimal Standard Model. Phys. Rev. Lett., 113(14):141602, 2014. doi: 10.1103/PhysRevLett.113.141602.
  454. Cosmic string gravitational waves from global U(1)B−L𝐵𝐿{}_{B-L}start_FLOATSUBSCRIPT italic_B - italic_L end_FLOATSUBSCRIPT symmetry breaking as a probe of the type I seesaw scale. JHEP, 11:071, 2023a. doi: 10.1007/JHEP11(2023)071.
  455. Confronting SO(10) GUTs with proton decay and gravitational waves. JHEP, 10:225, 2021b. doi: 10.1007/JHEP10(2021)225.
  456. Testing Realistic S⁢O⁢(10)𝑆𝑂10SO(10)italic_S italic_O ( 10 ) SUSY GUTs with Proton Decay and Gravitational Waves. 8 2023b.
  457. A predictive and testable unified theory of fermion masses, mixing and leptogenesis. JHEP, 11:072, 2022. doi: 10.1007/JHEP11(2022)072.
  458. Constraints on String Vacua with Space-Time Supersymmetry. Nucl. Phys. B, 307:93–108, 1988. doi: 10.1016/0550-3213(88)90523-8.
  459. Symmetries and Strings in Field Theory and Gravity. Phys. Rev. D, 83:084019, 2011. doi: 10.1103/PhysRevD.83.084019.
  460. Global symmetry, Euclidean gravity, and the black hole information problem. JHEP, 04:175, 2021. doi: 10.1007/JHEP04(2021)175.
  461. Gabriella Agazie et al. The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys. J. Lett., 951(1):L8, 2023b. doi: 10.3847/2041-8213/acdac6.
  462. Adeela Afzal et al. The NANOGrav 15 yr Data Set: Search for Signals from New Physics. Astrophys. J. Lett., 951(1):L11, 2023. doi: 10.3847/2041-8213/acdc91.
  463. J. Antoniadis et al. The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals. 6 2023b.
  464. J. Antoniadis et al. The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe. 6 2023c.
  465. Daniel J. Reardon et al. Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophys. J. Lett., 951(1):L6, 2023. doi: 10.3847/2041-8213/acdd02.
  466. Heng Xu et al. Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I. Res. Astron. Astrophys., 23(7):075024, 2023. doi: 10.1088/1674-4527/acdfa5.
  467. Kenji Tomita. Non-linear theory of gravitational instability in the expanding universe. Progress of Theoretical Physics, 37(5):831–846, 1967.
  468. General-relativistic approach to the nonlinear evolution of collisionless matter. Physical Review D, 47(4):1311, 1993.
  469. General relativistic dynamics of irrotational dust: Cosmological implications. Physical review letters, 72(3):320, 1994.
  470. Planck 2018 results-x. constraints on inflation. Astronomy & Astrophysics, 641:A10, 2020b.
  471. Guillem Domènech. Scalar Induced Gravitational Waves Review. Universe, 7(11):398, 2021. doi: 10.3390/universe7110398.
  472. Assadullahi Hooshyar. Gravitational waves from an early matter era. Phys. Rev. D, 79:083511, 2009.
  473. Observable induced gravitational waves from an early matter phase. Journal of Cosmology and Astroparticle Physics, 2013(05):033, 2013.
  474. Gravitational waves induced by scalar perturbations during a gradual transition from an early matter era to the radiation era. Journal of Cosmology and Astroparticle Physics, 2019(10):071, 2019a.
  475. Enhancement of gravitational waves induced by scalar perturbations due to a sudden transition from an early matter era to the radiation era. Physical Review D, 100(4):043532, 2019b.
  476. Guido Altarelli and G. Isidori. Lower limit on the Higgs mass in the standard model: An Update. Phys. Lett. B, 337:141–144, 1994. doi: 10.1016/0370-2693(94)91458-3.
  477. Standard model stability bounds for new physics within LHC reach. Phys. Lett. B, 382:374–382, 1996. doi: 10.1016/0370-2693(96)00682-X.
  478. Matching conditions and Higgs mass upper bounds revisited. Phys. Rev. D, 55:7255–7262, 1997. doi: 10.1103/PhysRevD.55.7255.
  479. Marc Sher. Electroweak Higgs Potentials and Vacuum Stability. Phys. Rept., 179:273–418, 1989. doi: 10.1016/0370-1573(89)90061-6.
  480. Peter Brockway Arnold. Can the Electroweak Vacuum Be Unstable? Phys. Rev. D, 40:613, 1989. doi: 10.1103/PhysRevD.40.613.
  481. On the metastability of the standard model vacuum. Nucl. Phys. B, 609:387–409, 2001. doi: 10.1016/S0550-3213(01)00302-9.
  482. The Probable Fate of the Standard Model. Phys. Lett. B, 679:369–375, 2009. doi: 10.1016/j.physletb.2009.07.054.
  483. Higgs mass implications on the stability of the electroweak vacuum. Phys. Lett. B, 709:222–228, 2012. doi: 10.1016/j.physletb.2012.02.013.
  484. Higgs mass and vacuum stability in the Standard Model at NNLO. JHEP, 08:098, 2012. doi: 10.1007/JHEP08(2012)098.
  485. Higgs Boson Mass and New Physics. JHEP, 10:140, 2012. doi: 10.1007/JHEP10(2012)140.
  486. Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision. Phys. Rev. Lett., 115(20):201802, 2015. doi: 10.1103/PhysRevLett.115.201802.
  487. Investigating the near-criticality of the Higgs boson. JHEP, 12:089, 2013. doi: 10.1007/JHEP12(2013)089.
  488. Gauge-Independent Scales Related to the Standard Model Vacuum Instability. Phys. Rev. D, 95(5):056004, 2017. doi: 10.1103/PhysRevD.95.056004.
  489. Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter. Phys. Rev. Lett., 120(12):121301, 2018a. doi: 10.1103/PhysRevLett.120.121301.
  490. Detectable Gravitational Wave Signals from Affleck-Dine Baryogenesis. Phys. Rev. Lett., 127(18):181601, 2021. doi: 10.1103/PhysRevLett.127.181601.
  491. Gravitational Wave Production right after a Primordial Black Hole Evaporation. Phys. Rev. D, 101(12):123533, 2020. doi: 10.1103/PhysRevD.101.123533.
  492. Primordial black holes from single field models of inflation. Phys. Dark Univ., 18:47–54, 2017. doi: 10.1016/j.dark.2017.09.007.
  493. Primordial Black Hole production in Critical Higgs Inflation. Phys. Lett. B, 776:345–349, 2018. doi: 10.1016/j.physletb.2017.11.039.
  494. Primordial black hole dark matter from single field inflation. Phys. Rev. D, 97(2):023501, 2018. doi: 10.1103/PhysRevD.97.023501.
  495. Misao Sasaki. Large Scale Quantum Fluctuations in the Inflationary Universe. Prog. Theor. Phys., 76:1036, 1986. doi: 10.1143/PTP.76.1036.
  496. Viatcheslav F. Mukhanov. Quantum Theory of Gauge Invariant Cosmological Perturbations. Sov. Phys. JETP, 67:1297–1302, 1988.
  497. Bernard J. Carr. The Primordial black hole mass spectrum. Astrophys. J., 201:1–19, 1975. doi: 10.1086/153853.
  498. Gravitational-wave background as a probe of the primordial black-hole abundance. Physical Review Letters, 102(16):161101, 2009.
  499. Gravitational-wave constraints on the abundance of primordial black holes. Progress of theoretical physics, 123(5):867–886, 2010.
  500. Gravitational waves at interferometer scales and primordial black holes in axion inflation. JCAP, 12:031, 2016. doi: 10.1088/1475-7516/2016/12/031.
  501. Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments. Phys. Rev. D, 95(12):123510, 2017a. doi: 10.1103/PhysRevD.95.123510.
  502. Prospective constraints on the primordial black hole abundance from the stochastic gravitational-wave backgrounds produced by coalescing events and curvature perturbations. Phys. Rev. D, 99(10):103531, 2019. doi: 10.1103/PhysRevD.99.103531. [Erratum: Phys.Rev.D 101, 069901 (2020)].
  503. Primordial Black Holes. 11 2022.
  504. Ruling Out Primordial Black Hole Formation From Single-Field Inflation. 11 2022.
  505. Response to criticism on ”Ruling Out Primordial Black Hole Formation From Single-Field Inflation”: A note on bispectrum and one-loop correction in single-field inflation with primordial black hole formation. 3 2023.
  506. A. Riotto. The Primordial Black Hole Formation from Single-Field Inflation is Still Not Ruled Out. 3 2023.
  507. No-go for the formation of heavy mass Primordial Black Holes in Single Field Inflation. 1 2023.
  508. Primordial Black Holes and Loops in Single-Field Inflation. 4 2023.
  509. When primordial black holes from sound speed resonance meet a stochastic background of gravitational waves. Physical Review D, 100(4):043518, 2019.
  510. Primordial black hole formation in a double inflation model in supergravity. Physical Review D, 57(10):6050, 1998.
  511. Primordial black holes as all dark matter. Journal of Cosmology and Astroparticle Physics, 2010(04):023, 2010.
  512. Primordial black hole formation from an axionlike curvaton model. Physical Review D, 87(6):063519, 2013.
  513. Inflationary primordial black holes as all dark matter. Physical Review D, 96(4):043504, 2017b.
  514. Scalaron from r2-gravity as a heavy field. Journal of Cosmology and Astroparticle Physics, 2018(05):042, 2018.
  515. Primordial black holes from sound speed resonance during inflation. Physical Review Letters, 121(8):081306, 2018.
  516. Primordial black holes from sound speed resonance in the inflaton-curvaton mixed scenario. Journal of Cosmology and Astroparticle Physics, 2019(10):068, 2019.
  517. Dirac-born-infeld realization of sound speed resonance mechanism for primordial black holes. Physical Review D, 102(6):063526, 2020b.
  518. Steepest growth of the power spectrum and primordial black holes. Journal of Cosmology and Astroparticle Physics, 2019(06):028, 2019.
  519. On the slope of the curvature power spectrum in non-attractor inflation. Journal of Cosmology and Astroparticle Physics, 2020(04):048, 2020.
  520. Seeding primordial black holes in multifield inflation. Physical Review Letters, 125(12):121301, 2020.
  521. Eft compatible pbhs: effective spawning of the seeds for primordial black holes during inflation. Journal of High Energy Physics, 2021(7):1–23, 2021.
  522. A cosmological signature of the sm higgs instability: gravitational waves. Journal of Cosmology and Astroparticle Physics, 2018(09):012, 2018b.
  523. Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations. Physical Review D, 97(12):123532, 2018.
  524. Formation of primordial black holes in an axionlike curvaton model. Physical Review D, 98(8):083508, 2018a.
  525. Primordial black holes for the ligo events in the axionlike curvaton model. Physical Review D, 97(12):123512, 2018b.
  526. Density perturbations and black hole formation in hybrid inflation. Physical Review D, 54(10):6040, 1996.
  527. Jun’ichi Yokoyama. Chaotic new inflation and formation of primordial black holes. Physical Review D, 58(8):083510, 1998.
  528. The role of non-gaussianities in primordial black hole formation. Physics of the Dark Universe, 24:100275, 2019.
  529. Analytical approximation of the scalar spectrum in the ultraslow-roll inflationary models. Physical Review D, 101(8):083535, 2020.
  530. Probing non-gaussianities with the high frequency tail of induced gravitational waves. Journal of Cosmology and Astroparticle Physics, 2021(06):001, 2021.
  531. Gravitational waves from double-inflection-point inflation. Physical Review D, 101(2):023505, 2020.
  532. Gravitational waves from binary supermassive black holes missing in pulsar observations. Science, 349(6255):1522–1525, 2015.
  533. Solving peak theory in the presence of local non-gaussianities. Journal of Cosmology and Astroparticle Physics, 2021(08):060, 2021.
  534. Gravitational wave production from axion rotations right after a transition to kination. Phys. Rev. D, 108(8):L081303, 2023. doi: 10.1103/PhysRevD.108.L081303.
  535. Enhancement of gravitational waves at Q-ball decay including non-linear density perturbations. 8 2023.
  536. Gravitational Wave Signals From Early Matter Domination: Interpolating Between Fast and Slow Transitions. 11 2023.
  537. Gauge dependence of gravitational waves generated from scalar perturbations. Astrophys. J., 842(1):46, 2017. doi: 10.3847/1538-4357/aa74be.
  538. On the Gauge Invariance of Cosmological Gravitational Waves. JCAP, 03:014, 2020. doi: 10.1088/1475-7516/2020/03/014.
  539. Gauge Independence of Induced Gravitational Waves. Phys. Rev. D, 101(2):023523, 2020. doi: 10.1103/PhysRevD.101.023523.
  540. Scalar induced gravitational waves in different gauges. Phys. Rev. D, 101(6):063018, 2020. doi: 10.1103/PhysRevD.101.063018.
  541. Gauge transformation of scalar induced gravitational waves. Phys. Rev. D, 102(8):083503, 2020. doi: 10.1103/PhysRevD.102.083503(2020).
  542. Note on gauge invariance of second order cosmological perturbations. Chin. Phys. C, 45(9):095101, 2021. doi: 10.1088/1674-1137/ac0c74.
  543. Approximate gauge independence of the induced gravitational wave spectrum. Phys. Rev. D, 103(6):063531, 2021. doi: 10.1103/PhysRevD.103.063531.
  544. A Cosmological Signature of the SM Higgs Instability: Gravitational Waves. JCAP, 09:012, 2018c. doi: 10.1088/1475-7516/2018/09/012.
  545. Gravitational wave constraints on the primordial black hole dominated early universe. JCAP, 04:062, 2021a. doi: 10.1088/1475-7516/2021/11/E01. [Erratum: JCAP 11, E01 (2021)].
  546. Small scale induced gravitational waves from primordial black holes, a stringent lower mass bound, and the imprints of an early matter to radiation transition. Phys. Rev. D, 104(2):023531, 2021. doi: 10.1103/PhysRevD.104.023531.
  547. Gravitational waves from density perturbations in an early matter domination era. JCAP, 07:046, 2021. doi: 10.1088/1475-7516/2021/07/046.
  548. Signals of primordial black holes at gravitational wave interferometers. Phys. Rev. D, 105(12):123023, 2022. doi: 10.1103/PhysRevD.105.123023.
  549. Decoding the phases of early and late time reheating through imprints on primordial gravitational waves. Phys. Rev. D, 104(6):063513, 2021. doi: 10.1103/PhysRevD.104.063513.
  550. Exploring evaporating primordial black holes with gravitational waves. Phys. Lett. B, 823:136722, 2021b. doi: 10.1016/j.physletb.2021.136722.
  551. Doubly peaked induced stochastic gravitational wave background: testing baryogenesis from primordial black holes. JHEP, 07:130, 2022. doi: 10.1007/JHEP07(2022)130.
  552. Distinct signatures of spinning PBH domination and evaporation: doubly peaked gravitational waves, dark relics and CMB complementarity. JHEP, 05:169, 2023. doi: 10.1007/JHEP05(2023)169.
  553. Dark Radiation and Superheavy Dark Matter from Black Hole Domination. JHEP, 08:001, 2019. doi: 10.1007/JHEP08(2019)001.
  554. Evaporating primordial black holes as varying dark energy. Phys. Dark Univ., 27:100413, 2020. doi: 10.1016/j.dark.2019.100413.
  555. Dirac and Majorana neutrino signatures of primordial black holes. JCAP, 08:014, 2020. doi: 10.1088/1475-7516/2020/08/014.
  556. Matter - Antimatter Accounting, Thermodynamics, and Black Hole Radiation. Phys. Rev. D, 19:1036–1045, 1979. doi: 10.1103/PhysRevD.19.1036.
  557. The Origin of Baryons in the Universe and the Astrophysical Implications. Nature, 279:303–305, 1979. doi: 10.1038/279303a0.
  558. Michael S. Turner. BARYON PRODUCTION BY PRIMORDIAL BLACK HOLES. Phys. Lett. B, 89:155–159, 1979. doi: 10.1016/0370-2693(79)90095-9.
  559. Baryogenesis in extended inflation. 2. Baryogenesis via primordial black holes. Phys. Rev. D, 43:984–994, 1991. doi: 10.1103/PhysRevD.43.984.
  560. Baryogenesis from black hole evaporation. Int. J. Mod. Phys. D, 4:517–529, 1995. doi: 10.1142/S0218271895000363.
  561. Baryogenesis from primordial black holes after electroweak phase transition. Phys. Rev. D, 60:063513, 1999. doi: 10.1103/PhysRevD.60.063513.
  562. Gravitational waves, baryogenesis, and dark matter from primordial black holes. 9 2000.
  563. Baryon asymmetry of the universe from evaporation of primordial black holes. Phys. Atom. Nucl., 66:476–480, 2003. doi: 10.1134/1.1563709.
  564. Primordial Black Hole Baryogenesis. 3 2007.
  565. Baryon asymmetry, dark matter, and density perturbation from primordial black holes. Phys. Rev. D, 89(10):103501, 2014. doi: 10.1103/PhysRevD.89.103501.
  566. Baryon asymmetry from primordial black holes. PTEP, 2017(3):033B02, 2017. doi: 10.1093/ptep/ptx011.
  567. Black Hole Genesis of Dark Matter. JCAP, 04:009, 2018. doi: 10.1088/1475-7516/2018/04/009.
  568. Melanopogenesis: Dark Matter of (almost) any Mass and Baryonic Matter from the Evaporation of Primordial Black Holes weighing a Ton (or less). JCAP, 05:005, 2019. doi: 10.1088/1475-7516/2019/05/005.
  569. The primordial black holes that disappeared: connections to dark matter and MHz-GHz gravitational Waves. JCAP, 10:001, 2023. doi: 10.1088/1475-7516/2023/10/001.
  570. Gravitational wave hints black hole remnants as dark matter. Class. Quant. Grav., 40(17):177001, 2023. doi: 10.1088/1361-6382/ace493.
  571. Testing high scale supersymmetry via second order gravitational waves. 8 2023.
  572. Enhancement of second-order gravitational waves at Q-ball decay. JCAP, 05:053, 2023. doi: 10.1088/1475-7516/2023/05/053.
  573. Marcelo Gleiser. Pseudostable bubbles. Physical Review D, 49(6):2978, 1994.
  574. Flat-top oscillons in an expanding universe. Physical Review D, 81(8):085045, 2010.
  575. Inflaton fragmentation and oscillon formation in three dimensions. Journal of Cosmology and Astroparticle Physics, 2010(12):001, 2010.
  576. Oscillons after inflation. Physical review letters, 108(24):241302, 2012.
  577. Gravitational waves from oscillon preheating. Journal of High Energy Physics, 2013(10):1–19, 2013.
  578. Mustafa A Amin. K-oscillons: Oscillons with noncanonical kinetic terms. Physical Review D, 87(12):123505, 2013.
  579. End of inflation, oscillons, and matter-antimatter asymmetry. Physical Review D, 90(8):083528, 2014.
  580. Parametric resonance after hilltop inflation caused by an inhomogeneous inflaton field. Journal of Cosmology and Astroparticle Physics, 2016(02):044, 2016.
  581. Impact of other scalar fields on oscillons after hilltop inflation. Journal of Cosmology and Astroparticle Physics, 2016(03):026, 2016.
  582. Gravitational waves from oscillons after inflation. Physical Review Letters, 118(1):011303, 2017.
  583. Oscillons from string moduli. Journal of High Energy Physics, 2018(1):1–42, 2018a.
  584. What can we learn from the stochastic gravitational wave background produced by oscillons? Journal of Cosmology and Astroparticle Physics, 2018(03):032, 2018b.
  585. Self-resonance after inflation: Oscillons, transients, and radiation domination. Physical Review D, 97(2):023533, 2018.
  586. Properties of oscillons in hilltop potentials: energies, shapes, and lifetimes. Journal of Cosmology and Astroparticle Physics, 2019(10):002, 2019.
  587. Yu Sang and Qing-Guo Huang. Stochastic gravitational-wave background from axion-monodromy oscillons in string theory during preheating. Physical Review D, 100(6):063516, 2019.
  588. Gravitational perturbations from oscillons and transients after inflation. Physical Review D, 99(12):123504, 2019.
  589. Gravitational wave spectra from oscillon formation after inflation. Journal of High Energy Physics, 2021(3):1–35, 2021.
  590. VA Rubakov and ME Shaposhnikov. Do we live inside a domain wall? Physics Letters B, 125(2-3):136–138, 1983.
  591. Out of this world supersymmetry breaking. Nuclear Physics B, 557(1-2):79–118, 1999.
  592. Detecting extra dimensions with gravity-wave spectroscopy: the black-string brane world. Physical review letters, 94(12):121302, 2005.
  593. A gravitational wave window on extra dimensions. Classical and Quantum Gravity, 24(9):F33, 2007.
  594. The pre-big bang scenario in string cosmology. Physics Reports, 373(1-2):1–212, 2003.
  595. M Gasperini and G Veneziano. String theory and pre-big bang cosmology. arXiv preprint hep-th/0703055, 2007.
  596. Gravitational radiation from string cosmology. arXiv preprint hep-th/9510081, 1995.
  597. L. P. Grishchuk. Amplification of gravitational waves in an istropic universe. Sov. Phys. JETP, 40:409–415, 1975. [Zh. Eksp. Teor. Fiz.67,825(1974)].
  598. Alexei A Starobinsky. Relict gravitation radiation spectrum and initial state of the universe. JETP lett, 30(682-685):131–132, 1979.
  599. Graviton creation in the inflationary universe and the grand unification scale. Physics Letters B, 115(3):189–192, 1982.
  600. R. Fabbri and M. d. Pollock. The Effect of Primordially Produced Gravitons upon the Anisotropy of the Cosmological Microwave Background Radiation. Phys. Lett. B, 125:445–448, 1983. doi: 10.1016/0370-2693(83)91322-9.
  601. Constraints on Generalized Inflationary Cosmologies. Nucl. Phys. B, 244:541–548, 1984. doi: 10.1016/0550-3213(84)90329-8.
  602. Blue-tilted tensor spectrum and thermal history of the universe. Journal of Cosmology and Astroparticle Physics, 2015(02):003, 2015.
  603. Cosmological inflation and large-scale structure. Cambridge university press, 2000.
  604. Particle production during inflation and gravitational waves detectable by ground-based interferometers. Phys. Rev. D, 85:023534, 2012. doi: 10.1103/PhysRevD.85.023534. [Erratum: Phys.Rev.D 86, 069901 (2012)].
  605. Non-Gaussianities and chiral gravitational waves in natural steep inflation. Phys. Rev. D, 85:123537, 2012. doi: 10.1103/PhysRevD.85.123537.
  606. Scale-dependent gravitational waves from a rolling axion. JCAP, 01:041, 2016. doi: 10.1088/1475-7516/2016/01/041.
  607. Primordial Gravitational Waves from Axion-Gauge Fields Dynamics. JCAP, 01:019, 2017. doi: 10.1088/1475-7516/2017/01/019.
  608. R. R. Caldwell and C. Devulder. Axion Gauge Field Inflation and Gravitational Leptogenesis: A Lower Bound on B Modes from the Matter-Antimatter Asymmetry of the Universe. Phys. Rev. D, 97(2):023532, 2018. doi: 10.1103/PhysRevD.97.023532.
  609. Blue-tilted Primordial Gravitational Waves from Massive Gravity. Phys. Lett. B, 789:215–219, 2019. doi: 10.1016/j.physletb.2018.12.025.
  610. Phantom inflation and primordial perturbation spectrum. Phys. Rev. D, 70:063513, 2004. doi: 10.1103/PhysRevD.70.063513.
  611. Higher Curvature Corrections to Primordial Fluctuations in Slow-roll Inflation. JCAP, 09:019, 2008. doi: 10.1088/1475-7516/2008/09/019.
  612. G-inflation: Inflation driven by the Galileon field. Phys. Rev. Lett., 105:231302, 2010. doi: 10.1103/PhysRevLett.105.231302.
  613. Solid Inflation. JCAP, 10:011, 2013. doi: 10.1088/1475-7516/2013/10/011.
  614. Classical decay of inflaton. Phys. Rev. Lett., 77:219–222, 1996. doi: 10.1103/PhysRevLett.77.219.
  615. Jeffrey M. Hyde. Sensitivity of gravitational waves from preheating to a scalar field’s interactions. Phys. Rev. D, 92(4):044026, 2015. doi: 10.1103/PhysRevD.92.044026.
  616. Andrei D. Linde. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B, 108:389–393, 1982. doi: 10.1016/0370-2693(82)91219-9.
  617. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett., 48:1220–1223, 1982. doi: 10.1103/PhysRevLett.48.1220.
  618. Andrei D. Linde. Chaotic Inflation. Phys. Lett. B, 129:177–181, 1983. doi: 10.1016/0370-2693(83)90837-7.
  619. Particle Production During Out-of-equilibrium Phase Transitions. Phys. Rev. D, 42:2491–2504, 1990. doi: 10.1103/PhysRevD.42.2491.
  620. Reheating after inflation. Phys. Rev. Lett., 73:3195–3198, 1994. doi: 10.1103/PhysRevLett.73.3195.
  621. Towards the theory of reheating after inflation. Phys. Rev. D, 56:3258–3295, 1997. doi: 10.1103/PhysRevD.56.3258.
  622. Andrei D. Linde. Hybrid inflation. Phys. Rev. D, 49:748–754, 1994. doi: 10.1103/PhysRevD.49.748.
  623. Dynamics of symmetry breaking and tachyonic preheating. Phys. Rev. Lett., 87:011601, 2001. doi: 10.1103/PhysRevLett.87.011601.
  624. Gravitational waves from inflation. Riv. Nuovo Cim., 39(9):399–495, 2016. doi: 10.1393/ncr/i2016-10127-1.
  625. Theory and Numerics of Gravitational Waves from Preheating after Inflation. Phys. Rev. D, 76:123517, 2007. doi: 10.1103/PhysRevD.76.123517.
  626. Gravity Waves from Tachyonic Preheating after Hybrid Inflation. JCAP, 03:001, 2009. doi: 10.1088/1475-7516/2009/03/001.
  627. Spectroscopy of particle couplings with gravitational waves. Phys. Rev. D, 106(6):063522, 2022. doi: 10.1103/PhysRevD.106.063522.
  628. Detectable Gravitational Waves from (P)-reheating probes non-thermal Dark Matter. 3 2022.
  629. Cosmological constraints on late time entropy production. Phys. Rev. Lett., 82:4168, 1999. doi: 10.1103/PhysRevLett.82.4168.
  630. MeV scale reheating temperature and thermalization of neutrino background. Phys. Rev., D62:023506, 2000. doi: 10.1103/PhysRevD.62.023506.
  631. Largest temperature of the radiation era and its cosmological implications. Phys. Rev. D, 64:023508, 2001. doi: 10.1103/PhysRevD.64.023508.
  632. MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles. JCAP, 12:012, 2019b. doi: 10.1088/1475-7516/2019/12/012.
  633. Andrei Sakharov. Maximum temperature of thermal radiation. Pisma Zh. Eksp. Teor. Fiz., 3:012, 439-441.
  634. Primordial gravitational waves, precisely: The role of thermodynamics in the Standard Model. JCAP, 1805(05):035, 2018. doi: 10.1088/1475-7516/2018/05/035.
Citations (27)

Summary

  • The paper demonstrates that gravitational wave detection can probe the Universe’s first second by revealing signals from high-energy primordial events.
  • It details innovative detection strategies, including pulsar timing arrays, astrometry, and interferometry, to capture the stochastic background.
  • The study’s implications extend to testing physics beyond the Standard Model and exploring high-energy phase transitions in the early cosmos.

Using Gravitational Waves to See the First Second of the Universe

The exploration of gravitational waves (GWs) as a tool to probe the early Universe offers a compelling insight into the primordial events that could lead to a detectable stochastic gravitational wave background. The paper authored by Rishav Roshan and Graham White, titled "Using gravitational waves to see the first second of the Universe," provides an in-depth examination of the detection prospects of these primordial sources. It underscores that the stochastic background from gravitational waves can illuminate aspects of physics beyond the Standard Model and explore new regimes of energy and scale, occasionally reaching remarkably high scales.

The Significance of Gravitational Waves

Gravitational waves, as predicted by general relativity, have been pivotal to modern cosmology and have been confirmed by observations such as the aLIGO detections. While electromagnetic observations are limited to data after recombination, gravitational waves allow us to explore back to the end of inflation because the Universe is transparent to GWs right from the beginning.

Detection Strategies and Prospects

The paper extensively reviews the technology and methodologies involved in the detection of stochastic gravitational wave backgrounds. It outlines several strategies:

  1. Pulsar Timing Arrays (PTAs): These facilities measure deviations in the periodic signals from pulsars. While they are an effective tool for detecting GWs in the nanoHz to µHz range, current PTAs are yet to observe a stochastic background from the early Universe.
  2. Astrometry: The precision of measuring the positions of stars across the sky over extended periods could potentially reveal the influence of GWs via astrometric microlensing and proper motion variations. Projects like Gaia and future missions such as Theia could significantly contribute to this approach.
  3. Interferometry: Ground-based interferometers like LIGO, VIRGO, and KAGRA, as well as future space-based detectors like LISA and TianQin, are crucial for detecting GWs from higher frequency sources typically produced by very high-energy phase transitions.

Primordial Sources of Gravitational Waves

The paper discusses various primordial events that may generate a detectable GW background:

  1. First-order Phase Transitions: Phase transitions in the early universe, when symmetries are broken, can produce GWs through bubble nucleation, collisions, and subsequent turbulence in the plasma. The strength and frequency of the signal can provide insights into conditions like the energy scale of the transition and the speed of sound in the medium.
  2. Topological Defects: Cosmic strings or other defects resulting from symmetry breaking can source gravitational waves over a wide range of scales.
  3. Scalar-induced Gravitational Waves: These are generated from large perturbations in the scalar fields during ultra-slow roll phases of inflation or from abrupt changes in the equation of state, which can induce secondary gravitational radiation.

Implications and Future Directions

Understanding these signals requires precise predictions of their spectra, which involve complex computational challenges. The potential discovery of primordial stochastic gravitational waves could revolutionize our understanding of high-energy physics and cosmology. It is implied that future research might focus on enhancing detector sensitivity, refining theoretical models, and potentially reconciling signals observed across different GW observatory modalities.

In conclusion, the paper highlights the transformative potential of gravitational wave cosmology and the pursuit of probing the Universe's infancy. As experimental and theoretical techniques advance, GWs may unveil new physics and mysteries of the cosmos, providing a unique glimpse into the first second of creation.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.