Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stable generative modeling using Schrödinger bridges (2401.04372v3)

Published 9 Jan 2024 in stat.ML, cs.LG, cs.NA, math.NA, and stat.CO

Abstract: We consider the problem of sampling from an unknown distribution for which only a sufficiently large number of training samples are available. Such settings have recently drawn considerable interest in the context of generative modelling and Bayesian inference. In this paper, we propose a generative model combining Schr\"odinger bridges and Langevin dynamics. Schr\"odinger bridges over an appropriate reversible reference process are used to approximate the conditional transition probability from the available training samples, which is then implemented in a discrete-time reversible Langevin sampler to generate new samples. By setting the kernel bandwidth in the reference process to match the time step size used in the unadjusted Langevin algorithm, our method effectively circumvents any stability issues typically associated with the time-stepping of stiff stochastic differential equations. Moreover, we introduce a novel split-step scheme, ensuring that the generated samples remain within the convex hull of the training samples. Our framework can be naturally extended to generate conditional samples and to Bayesian inference problems. We demonstrate the performance of our proposed scheme through experiments on synthetic datasets with increasing dimensions and on a stochastic subgrid-scale parametrization conditional sampling problem as well as generating sample trajectories of a dynamical system using conditional sampling.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. T. Berry and J. Harlim. Variable bandwidth diffusion kernels. Applied and Computational Harmonic Analysis, 40(1):68–96, 2016. ISSN 1063-5203. doi: https://doi.org/10.1016/j.acha.2015.01.001. URL https://www.sciencedirect.com/science/article/pii/S1063520315000020.
  2. Y. Bian and X.-Q. Xie. Generative chemistry: drug discovery with deep learning generative models. Journal of Molecular Modeling, 27:1–18, 2021.
  3. Generative models for molecular discovery: Recent advances and challenges. WIREs Computational Molecular Science, 12(5):e1608, 2022. doi: https://doi.org/10.1002/wcms.1608. URL https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1608.
  4. Generative modeling with denoising auto-encoders and langevin sampling. ArXiv, abs/2002.00107, 2020. URL https://api.semanticscholar.org/CorpusID:211010797.
  5. Learning gradient fields for shape generation. In A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, editors, Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part III, volume 12348 of Lecture Notes in Computer Science, pages 364–381. Springer, 2020. doi: 10.1007/978-3-030-58580-8_22. URL https://doi.org/10.1007/978-3-030-58580-8_22.
  6. J. A. Carrillo and U. Vaes. Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations. Nonlinearity, 34(4):2275, feb 2021. doi: 10.1088/1361-6544/abbe62. URL https://dx.doi.org/10.1088/1361-6544/abbe62.
  7. R. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic Analysis, 21(1):5–30, 2006. ISSN 1063-5203. doi: https://doi.org/10.1016/j.acha.2006.04.006. URL https://www.sciencedirect.com/science/article/pii/S1063520306000546. Special Issue: Diffusion Maps and Wavelets.
  8. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proceedings of the National Academy of Sciences, 102(21):7426–7431, 2005. doi: 10.1073/pnas.0500334102. URL https://www.pnas.org/doi/abs/10.1073/pnas.0500334102.
  9. M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf.
  10. Image anomaly detection with generative adversarial networks. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings, Part I 18, pages 3–17. Springer, 2019.
  11. J. Fan and I. Gijbels. Variable bandwidth and local linear regression smoothers. The Annals of Statistics, 20(4):2008 – 2036, 1992. doi: 10.1214/aos/1176348900. URL https://doi.org/10.1214/aos/1176348900.
  12. Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler. SIAM Journal on Applied Dynamical Systems, 19(1):412–441, 2020. doi: 10.1137/19M1251655. URL https://doi.org/10.1137/19M1251655.
  13. M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123–214, 2011. doi: https://doi.org/10.1111/j.1467-9868.2010.00765.x. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2010.00765.x.
  14. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.
  15. G. Gottwald and I. Melbourne. Time-reversibility and nonvanishing Lévy area, 2022.
  16. Stochastic climate theory. In C. L. E. Franzke and T. J. O’Kane, editors, Nonlinear and Stochastic Climate Dynamics, pages 209–240. Cambridge University Press, Cambridge, 2017.
  17. G. A. Gottwald and I. Melbourne. Homogenization for deterministic maps and multiplicative noise. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 469(2156), 2013.
  18. G. A. Gottwald and S. Reich. Supervised learning from noisy observations: Combining machine-learning techniques with data assimilation. Physica D: Nonlinear Phenomena, 423:132911, 2021a. ISSN 0167-2789. doi: https://doi.org/10.1016/j.physd.2021.132911. URL https://www.sciencedirect.com/science/article/pii/S0167278921000695.
  19. G. A. Gottwald and S. Reich. Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(10):101103, 2021b. ISSN 1054-1500. doi: 10.1063/5.0066080. URL https://doi.org/10.1063/5.0066080.
  20. Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.
  21. Cascaded diffusion models for high fidelity image generation. J. Mach. Learn. Res., 23:47:1–47:33, 2021.
  22. A. Hyvärinen and P. Dayan. Estimation of non-normalized statistical models by score matching. Journal of Machine Learning Research, 6(4), 2005.
  23. D. Kelly and I. Melbourne. Deterministic homogenization for fast–slow systems with chaotic noise. Journal of Functional Analysis, 272(10):4063 – 4102, 2017.
  24. A. A. S. Khandelwal. Fine-tuning generative models. PhD thesis, Massachusetts Institute of Technology, 2019.
  25. D. P. Kingma and M. Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013.
  26. P. A. Knight. The Sinkhorn-Knopp algorithm: Convergence and applications. SIAM J. Matrix Anal. Appl., 30:261–275, 2008.
  27. Bayesian imaging using plug & play priors: When Langevin meets Tweedie. SIAM Journal on Imaging Sciences, 15(2):701–737, 2022. doi: 10.1137/21M1406349. URL https://doi.org/10.1137/21M1406349.
  28. Preconditioned stochastic gradient langevin dynamics for deep neural networks. In AAAI Conference on Artificial Intelligence, 2015. URL https://api.semanticscholar.org/CorpusID:17043130.
  29. Diffusion-lm improves controllable text generation, 2022. URL https://arxiv.org/abs/2205.14217.
  30. A generative model for category text generation. Information Sciences, 450:301–315, 2018. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.2018.03.050. URL https://www.sciencedirect.com/science/article/pii/S0020025518302366.
  31. E. N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2):130–141, 1963. doi: 10.1175/1520-0469(1963)020¡0130:DNF¿2.0.CO;2.
  32. MATLAB. version 9.13.0.2049777 (R2022b). The MathWorks Inc., Natick, Massachusetts, 2022.
  33. Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stochastic Processes and their Applications, 101:185–232, 2002.
  34. I. Melbourne and A. Stuart. A note on diffusion limits of chaotic skew-product flows. Nonlinearity, 24:1361–1367, 2011.
  35. S. Meyn and R. T. Tweedy. Markov Chains and Stochastic Stability. Cambridge University Press, Cambridge, 2nd edition, 2009. doi: 10.1017/CBO9780511626630.
  36. H.-G. Muller and U. Stadtmuller. Variable bandwidth kernel estimators of regression curves. The Annals of Statistics, 15(1):182 – 201, 1987. doi: 10.1214/aos/1176350260. URL https://doi.org/10.1214/aos/1176350260.
  37. Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems, volume 18. MIT Press, 2005. URL https://proceedings.neurips.cc/paper/2005/file/2a0f97f81755e2878b264adf39cba68e-Paper.pdf.
  38. Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Applied and Computational Harmonic Analysis, 21(1):113–127, 2006. ISSN 1063-5203. doi: https://doi.org/10.1016/j.acha.2005.07.004. URL https://www.sciencedirect.com/science/article/pii/S1063520306000534. Special Issue: Diffusion Maps and Wavelets.
  39. N. Nüsken and S. Reich. Note on interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler by Garbuno-Inigo, Hoffmann, Li and Stuart, 2019.
  40. A.-A. Pooladian and J. Niles-Weed. Entropic estimation of optimal transport maps, 2022. URL https://arxiv.org/pdf/2109.12004.pdf.
  41. L. Rey-Bellet and K. V. Spiliopoulos. Improving the convergence of reversible samplers. Journal of Statistical Physics, 164:472–494, 2016.
  42. Stochastic backpropagation and approximate inference in deep generative models. In International conference on machine learning, pages 1278–1286. PMLR, 2014.
  43. High-resolution image synthesis with latent diffusion models, 2021. URL https://arxiv.org/abs/2112.10752.
  44. L. Ruthotto and E. Haber. An introduction to deep generative modeling. GAMM-Mitteilungen, 44(2):e202100008, 2021. doi: https://doi.org/10.1002/gamm.202100008. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.202100008.
  45. Exploring the use of variable bandwidth kernel density estimators. The Stata Journal, 3(2):133–147, 2003. doi: 10.1177/1536867X0300300203. URL https://doi.org/10.1177/1536867X0300300203.
  46. Improved techniques for training GANs. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf.
  47. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In International conference on information processing in medical imaging, pages 146–157. Springer, 2017.
  48. Large-scale optimal transport and mapping estimation. In Proceedings of the International Conference in Learning Representations, 2018.
  49. Singan: Learning a generative model from a single natural image. In Proceedings of the IEEE/CVF international conference on computer vision, pages 4570–4580, 2019.
  50. Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502, 2020a.
  51. Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019a. URL https://proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf.
  52. Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. Advances in neural information processing systems, 32, 2019b.
  53. Y. Song and S. Ermon. Improved techniques for training score-based generative models. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 12438–12448. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/92c3b916311a5517d9290576e3ea37ad-Paper.pdf.
  54. Sliced score matching: A scalable approach to density and score estimation. In Uncertainty in Artificial Intelligence, pages 574–584. PMLR, 2020b.
  55. Score-based generative modeling through stochastic differential equations. ArXiv, abs/2011.13456, 2020c.
  56. Variable kernel density estimation. The Annals of Statistics, pages 1236–1265, 1992.
  57. Diffusion-gan: Training GANs with diffusion. arXiv preprint arXiv:2206.02262, 2022.
  58. C. Wormell and S. Reich. Spectral convergence of diffusion maps: Improved error bounds and an alternative normalisation. SIAM J. Numer. Anal., 59:1687–1734, 2021. doi: 10.1137/20M1344093.
  59. J. Wouters and G. A. Gottwald. Edgeworth expansions for slow–fast systems with finite time-scale separation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2223):20180358, 2019a.
  60. J. Wouters and G. A. Gottwald. Stochastic model reduction for slow-fast systems with moderate time scale separation. Multiscale Modeling & Simulation, 17(4):1172–1188, 2019b.
  61. Langevin diffusions and the Metropolis-adjusted Langevin algorithm. Statistics & Probability Letters, 91(C):14–19, 2014. doi: 10.1016/j.spl.2014.04.002. URL https://ideas.repec.org/a/eee/stapro/v91y2014icp14-19.html.
  62. Diffusion models: A comprehensive survey of methods and applications, 2022. URL https://arxiv.org/abs/2209.00796.
  63. Generative and discriminative text classification with recurrent neural networks. ArXiv, abs/1703.01898, 2017.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets