Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A DEIM Tucker Tensor Cross Algorithm and its Application to Dynamical Low-Rank Approximation (2401.04249v1)

Published 8 Jan 2024 in math.NA and cs.NA

Abstract: We introduce a Tucker tensor cross approximation method that constructs a low-rank representation of a $d$-dimensional tensor by sparsely sampling its fibers. These fibers are selected using the discrete empirical interpolation method (DEIM). Our proposed algorithm is referred to as DEIM fiber sampling (DEIM-FS). For a rank-$r$ approximation of an $\mathcal{O}(Nd)$ tensor, DEIM-FS requires access to only $dNr{d-1}$ tensor entries, a requirement that scales linearly with the tensor size along each mode. We demonstrate that DEIM-FS achieves an approximation accuracy close to the Tucker-tensor approximation obtained via higher-order singular value decomposition at a significantly reduced cost. We also present DEIM-FS (iterative) that does not require access to singular vectors of the target tensor unfolding and can be viewed as a black-box Tucker tensor algorithm. We employ DEIM-FS to reduce the computational cost associated with solving nonlinear tensor differential equations (TDEs) using dynamical low-rank approximation (DLRA). The computational cost of solving DLRA equations can become prohibitive when the exact rank of the right-hand side tensor is large. This issue arises in many TDEs, especially in cases involving non-polynomial nonlinearities, where the right-hand side tensor has full rank. This necessitates the storage and computation of tensors of size $\mathcal{O}(Nd)$. We show that DEIM-FS results in significant computational savings for DLRA by constructing a low-rank Tucker approximation of the right-hand side tensor on the fly. Another advantage of using DEIM-FS is to significantly simplify the implementation of DLRA equations, irrespective of the type of TDEs. We demonstrate the efficiency of the algorithm through several examples including solving high-dimensional partial differential equations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.
  2. L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-rank tensor approximation techniques,” GAMM-Mitteilungen, vol. 36, pp. 53–78, 2020/07/06 2013.
  3. L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” vol. 31, no. 3, pp. 279–311, 1966.
  4. R. A. Harshman, “Foundations of the PARAFAC procedure: Models and conditions for an ”explanatory” multi-modal factor analysis,” UCLA Working Papers in Phonetics, vol. 16, pp. 1–84, 1970.
  5. L. Grasedyck, “Hierarchical singular value decomposition of tensors,” SIAM Journal on Matrix Analysis and Applications, vol. 31, pp. 2029–2054, 2023/12/11 2010.
  6. I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific Computing, vol. 33, pp. 2295–2317, 2020/03/23 2011.
  7. O. Koch and C. Lubich, “Dynamical tensor approximation,” SIAM Journal on Matrix Analysis and Applications, vol. 31, no. 5, pp. 2360–2375, 2010.
  8. M. H. Beck, A. Jäckle, G. A. Worth, and H. D. Meyer, “The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets,” Physics Reports, vol. 324, pp. 1–105, 1 2000.
  9. H. Risken, The Fokker-Planck-Equation. Methods of Solution and Applications. Springer Berlin, Heidelberg, 09 1996.
  10. A. M. Boelens, D. Venturi, and D. M. Tartakovsky, “Tensor methods for the Boltzmann-BGK equation,” Journal of Computational Physics, vol. 421, p. 109744, 2020.
  11. S. Dolgov, D. Kalise, and K. K. Kunisch, “Tensor decomposition methods for high-dimensional Hamilton-Jacobi-Bellman equations,” SIAM Journal on Scientific Computing, vol. 43, no. 3, pp. A1625–A1650, 2021.
  12. I. Gavrilyuk and B. N. Khoromskij, “Tensor numerical methods: Actual theory and recent applications,” Computational Methods in Applied Mathematics, vol. 19, no. 1, pp. 1–4, 2019.
  13. O. Koch and C. Lubich, “Dynamical low‐rank approximation,” SIAM Journal on Matrix Analysis and Applications, vol. 29, pp. 434–454, 2017/04/02 2007.
  14. L. Einkemmer and C. Lubich, “A low-rank projector-splitting integrator for the vlasov–poisson equation,” SIAM Journal on Scientific Computing, vol. 40, pp. B1330–B1360, 2023/08/15 2018.
  15. J. Hu and Y. Wang, “An adaptive dynamical low rank method for the nonlinear boltzmann equation,” Journal of Scientific Computing, vol. 92, no. 2, p. 75, 2022.
  16. M. Donello, M. H. Carpenter, and H. Babaee, “Computing sensitivities in evolutionary systems: A real-time reduced order modeling strategy,” SIAM Journal on Scientific Computing, pp. A128–A149, 2022/01/19 2022.
  17. D. Ramezanian, A. G. Nouri, and H. Babaee, “On-the-fly reduced order modeling of passive and reactive species via time-dependent manifolds,” Computer Methods in Applied Mechanics and Engineering, vol. 382, p. 113882, 2021.
  18. M. H. Naderi and H. Babaee, “Adaptive sparse interpolation for accelerating nonlinear stochastic reduced-order modeling with time-dependent bases,” Computer Methods in Applied Mechanics and Engineering, vol. 405, p. 115813, 2023.
  19. M. Donello, G. Palkar, M. H. Naderi, D. C. Del Rey Fernández, and H. Babaee, “Oblique projection for scalable rank-adaptive reduced-order modelling of nonlinear stochastic partial differential equations with time-dependent bases,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 479, p. 20230320, 2023/10/19 2023.
  20. L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value decomposition,” SIAM Journal on Matrix Analysis and Applications, vol. 21, pp. 1253–1278, 2020/07/11 2000.
  21. S. Ahmadi-Asl, S. Abukhovich, M. G. Asante-Mensah, A. Cichocki, A. H. Phan, T. Tanaka, and I. Oseledets, “Randomized algorithms for computation of Tucker decomposition and higher order SVD (HOSVD),” IEEE Access, vol. 9, pp. 28684–28706, 2021.
  22. A. K. Saibaba, “HOID: Higher order interpolatory decomposition for tensors based on Tucker representation,”
  23. N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, “A new truncation strategy for the higher-order singular value decomposition,” SIAM Journal on Scientific Computing, vol. 34, pp. A1027–A1052, 2020/07/06 2012.
  24. S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, “A theory of pseudoskeleton approximations,” Linear Algebra and its Applications, vol. 261, no. 1, pp. 1–21, 1997.
  25. 2001.
  26. D. Savostyanov, Polilinear approximation of matrices and integral equations. PhD thesis, Dept. Math., INM RAS, Moscow, Russia, 2006.
  27. E. Tyrtyshnikov, “Incomplete cross approximation in the mosaic-skeleton method,” Computing, vol. 64, no. 4, pp. 367–380, 2000.
  28. M. W. Mahoney, “Randomized algorithms for matrices and data,” Foundations and Trends® in Machine Learning, vol. 3, no. 2, pp. 123–224, 2011.
  29. D. C. Sorensen and M. Embree, “A DEIM induced CUR factorization,” SIAM Journal on Scientific Computing, vol. 38, no. 3, pp. A1454–A1482, 2016.
  30. C. F. Caiafa and A. Cichocki, “Generalizing the column–row matrix decomposition to multi-way arrays,” Linear Algebra and its Applications, vol. 433, no. 3, pp. 557–573, 2010.
  31. I. Oseledets and E. Tyrtyshnikov, “TT-cross approximation for multidimensional arrays,” Linear Algebra and its Applications, vol. 432, no. 1, pp. 70–88, 2010.
  32. J. Ballani, L. Grasedyck, and M. Kluge, “Black box approximation of tensors in hierarchical Tucker format,” Linear Algebra and its Applications, vol. 438, no. 2, pp. 639–657, 2013.
  33. S. Ahmadi-Asl, C. F. Caiafa, A. Cichocki, A. H. Phan, T. Tanaka, I. Oseledets, and J. Wang, “Cross tensor approximation methods for compression and dimensionality reduction,” IEEE Access, vol. 9, pp. 150809–150838, 2021.
  34. G. Ceruti and C. Lubich, “Time integration of symmetric and anti-symmetric low-rank matrices and Tucker tensors,” BIT Numerical Mathematics, vol. 60, no. 3, pp. 591–614, 2020.
  35. G. Ceruti, J. Kusch, and C. Lubich, “A rank-adaptive robust integrator for dynamical low-rank approximation,” BIT Numerical Mathematics, vol. 62, no. 4, pp. 1149–1174, 2022.
  36. K. Manohar, B. W. Brunton, J. N. Kutz, and S. L. Brunton, “Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns,” IEEE Control Systems Magazine, vol. 38, no. 3, pp. 63–86, 2018.
  37. S. Chaturantabut and D. C. Sorensen, “Nonlinear model reduction via discrete empirical interpolation,” SIAM Journal on Scientific Computing, vol. 32, no. 5, pp. 2737–2764, 2010.
  38. S. Karlin and H. E. Taylor, A Second Course in Stochastic Processes. New York, NY: Academic Press, 1981.
Citations (4)

Summary

We haven't generated a summary for this paper yet.