Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform Distribution on $(n-1)$-Sphere: Rate-Distortion under Squared Error Distortion (2401.04248v1)

Published 8 Jan 2024 in cs.IT and math.IT

Abstract: This paper investigates the rate-distortion function, under a squared error distortion $D$, for an $n$-dimensional random vector uniformly distributed on an $(n-1)$-sphere of radius $R$. First, an expression for the rate-distortion function is derived for any values of $n$, $D$, and $R$. Second, two types of asymptotics with respect to the rate-distortion function of a Gaussian source are characterized. More specifically, these asymptotics concern the low-distortion regime (that is, $D \to 0$) and the high-dimensional regime (that is, $n \to \infty$).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. J. Berry, “Minimax Estimation of a Bounded Normal Mean Vector,” Journal of Multivariate Analysis, vol. 35, no. 1, pp. 130–139, 1990. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0047259X9090020I
  2. É. Marchand and F. Perron, “On the Minimax Estimator of a Bounded Normal Mean,” Statistics & Probability Letters, vol. 58, no. 4, pp. 327–333, 2002. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167715202000895
  3. D. Fourdrinier and É. Marchand, “On Bayes estimators with uniform priors on spheres and their comparative performance with maximum likelihood estimators for estimating bounded multivariate normal means,” Journal of Multivariate Analysis, vol. 101, no. 6, pp. 1390–1399, 2010.
  4. C. Robert, “Modified Bessel functions and their applications in probability and statistics,” Statistics & Probability Letters, vol. 9, no. 2, pp. 155–161, 1990.
  5. A. Dytso, M. Al, H. V. Poor, and S. S. Shitz, “On the Capacity of the Peak Power Constrained Vector Gaussian Channel: An Estimation Theoretic Perspective,” IEEE Transactions on Information Theory, vol. 65, no. 6, pp. 3907–3921, 2019.
  6. A. Dytso, M. Egan, S. M. Perlaza, H. V. Poor, and S. S. Shitz, “Optimal Inputs for Some Classes of Degraded Wiretap Channels,” in 2018 IEEE Information Theory Workshop (ITW), 2018, pp. 1–5.
  7. A. Favano, L. Barletta, and A. Dytso, “Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution,” Entropy, vol. 25, no. 5, 2023. [Online]. Available: https://www.mdpi.com/1099-4300/25/5/741
  8. V. Y. F. Tan and M. Tomamichel, “The Third-Order Term in the Normal Approximation for the AWGN Channel,” IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2430–2438, 2015.
  9. E. MolavianJazi and J. N. Laneman, “A Second-Order Achievable Rate Region for Gaussian Multi-Access Channels via a Central Limit Theorem for Functions,” IEEE Transactions on Information Theory, vol. 61, no. 12, pp. 6719–6733, 2015.
  10. J. Scarlett and V. Y. Tan, “Second-Order Asymptotics for the Gaussian MAC with Degraded Message Sets,” IEEE Transactions on Information Theory, vol. 61, no. 12, pp. 6700–6718, 2015.
  11. D. Tuninetti, P. Sheldon, B. Smida, and N. Devroye, “On Second Order Rate Regions for the Static Scalar Gaussian Broadcast Channel,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 7, pp. 1982–1999, 2023.
  12. S.-Q. Le, V. Y. F. Tan, and M. Motani, “A Case Where Interference Does Not Affect the Channel Dispersion,” IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2439–2453, 2015.
  13. J. Scarlett, “On the Dispersions of the Gel’fand–Pinsker Channel and Dirty Paper Coding,” IEEE Transactions on Information Theory, vol. 61, no. 9, pp. 4569–4586, 2015.
  14. E. Riegler, G. Koliander, and H. Bölcskei, “Lossy compression of general random variables,” Information and Inference: A Journal of the IMA, vol. 12, no. 3, p. 1759–1829, 2023.
  15. T. Berger and J. D. Gibson, “Lossy Source Coding,” IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2693–2723, 1998.
  16. P. Swaszek and J. Thomas, “Multidimensional Spherical Coordinates Quantization,” IEEE Transactions on Information Theory, vol. 29, no. 4, pp. 570–576, 1983.
  17. B. Matschkal and J. B. Huber, “Spherical Logarithmic Quantization,” IEEE transactions on audio, speech, and language processing, vol. 18, no. 1, pp. 126–140, 2009.
  18. S. Eghbali and L. Tahvildari, “Deep Spherical Quantization for Image Search,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11 690–11 699.
  19. D. P. Smith, “The Sphere as a Tool for Teaching Statistics,” Journal of Geological Education, vol. 42, no. 5, pp. 412–416, 1994.
  20. A. J. Stam, “Limit theorems for uniform distributions on spheres in high-dimensional Euclidean spaces,” Journal of Applied probability, vol. 19, no. 1, pp. 221–228, 1982.
  21. T. Kawabata and A. Dembo, “The Rate-Distortion Dimension of Sets and Measures,” IEEE Transactions on Information Theory, vol. 40, no. 5, pp. 1564–1572, 1994.
  22. Y. Wu and S. Verdú, “Rényi Information Dimension: Fundamental Limits of Almost Lossless Analog Compression,” IEEE Transactions on Information Theory, vol. 56, no. 8, pp. 3721–3748, 2010.
  23. D. Stotz and H. Bölcskei, “Degrees of Freedom in Vector Interference Channels,” IEEE Transactions on Information Theory, vol. 62, no. 7, pp. 4172–4197, 2016.
  24. J. Segura, “Monotonicity Properties for Ratios and Products of Modified Bessel Functions and Sharp Trigonometric Bounds,” Results Math, vol. 74, no. 221, 2021. [Online]. Available: https://doi.org/10.1007/s00025-021-01531-1
  25. P. Schniter and S. Rangan, “Compressive Phase Retrieval via Generalized Approximate Message Passing,” IEEE Transactions on Signal Processing, vol. 63, no. 4, pp. 1043–1055, 2014.
  26. J. Segura, “Bounds for ratios of modified Bessel functions and associated Turán-type inequalities,” Journal of Mathematical Analysis and Applications, vol. 374, no. 2, pp. 516–528, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022247X10007742
  27. A. Laforgia and P. Natalini, “Some Inequalities for Modified Bessel Functions,” Journal of Inequalities and Applications, no. 253035, 2010.
  28. D. Guo, S. Shamai, and S. Verdú, “Mutual Information and Minimum Mean-Square Error in Gaussian Channels,” IEEE Transactions on Information Theory, vol. 51, no. 4, pp. 1261–1282, 2005.
  29. I. Csiszár, “On an extremum problem of information theory,” Studia Scientiarum Mathematicarum Hungarica, vol. 9, no. 1, pp. 57–71, 1974.

Summary

We haven't generated a summary for this paper yet.