Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Teacher bias or measurement error? (2401.04200v2)

Published 8 Jan 2024 in econ.EM

Abstract: In many countries, teachers' track recommendations are used to allocate students to secondary school tracks. Previous studies have shown that students from families with low socioeconomic status (SES) receive lower track recommendations than their peers from high SES families, conditional on standardized test scores. It is often argued that this indicates teacher bias. However, this claim is invalid in the presence of measurement error in test scores. We discuss how measurement error in test scores generates a biased coefficient of the conditional SES gap, and consider three empirical strategies to address this bias. Using administrative data from the Netherlands, we find that measurement error explains 35 to 43% of the conditional SES gap in track recommendations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Revealing stereotypes: Evidence from immigrants in schools. Working Paper 25333, National Bureau of Economic Research.
  2. Are tracking recommendations biased? A review of teachers’ role in the creation of inequalities in tracking decisions. Teaching and Teacher Education 123, 103985.
  3. The long-run effects of secondary school track assignment. PloS one 14(10), e0215493.
  4. Should we sort it out later? The effect of tracking age on long-run outcomes. Economics of Education Review 75, 101973.
  5. Racial discrimination in grading: Evidence from Brazil. American Economic Journal: Applied Economics 7(4), 37–52.
  6. Test scores, subjective assessment, and stereotyping of ethnic minorities. Journal of Labor Economics 31(3), 535–576.
  7. Carlana, M. (2019). Implicit stereotypes: Evidence from teachers’ gender bias. The Quarterly Journal of Economics 134(3), 1163–1224.
  8. Implicit stereotypes in teachers’ track recommendations. AEA Papers and Proceedings 112, 409–14.
  9. College Board (2013). Test characteristics of the SAT: Reliability, difficulty levels, completion rates. https://secure-media.collegeboard.org/digitalServices/pdf/research/Test-Characteristics-of-SAT-2013.pdf, Accessed August 2023.
  10. Noncognitive skills and the gender disparities in test scores and teacher assessments: Evidence from primary school. Journal of Human resources 48(1), 236–264.
  11. Culpepper, S. A. (2012). Evaluating EIV, OLS, and SEM estimators of group slope differences in the presence of measurement error: The single-indicator case. Applied Psychological Measurement 36(5), 349–374.
  12. The quality of school track assignment decisions by teachers. Working paper, arXiv preprint arXiv:2304.10636.
  13. DUO (2023). Onderzoek LVS en eindtoets. Rapportage.
  14. The long-term effects of early track choice. The Economic Journal 127(603), 1348–1380.
  15. Educational Testing Service (2023). Guide to the use of scores. https://www.ets.org/pdfs/gre/gre-guide-to-the-use-of-scores.pdf, Accessed August 2023.
  16. Mentoring and schooling decisions: Causal evidence. Working Paper No. 13387, IZA.
  17. Understanding peer effects: On the nature, estimation, and channels of peer effects. Journal of Labor Economics 35(2), 387–428.
  18. Fuller, W. A. (2009). Measurement error models. John Wiley & Sons.
  19. Experimenting with measurement error: Techniques with applications to the caltech cohort study. Journal of Political Economy 127(4), 1826–1863.
  20. Graduate Management Admission Council (2023). Validity, reliability & fairness. https://www.gmac.com/gmat-other-assessments/about-the-gmat-exam/validity-reliability-fairness, Accessed August 2023.
  21. Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychometrika 10(4), 255–282.
  22. Using data to advance educational research, policy, and practice: Design, content, and research potential of the netherlands cohort study on education. European Sociological Review 36(4), 643–662.
  23. Hausman, J. (2001). Mismeasured variables in econometric analysis: Problems from the right and problems from the left. Journal of Economic Perspectives 15(4), 57–67.
  24. Hill, A. J. and D. B. Jones (2021). Self-fulfilling prophecies in the classroom. Journal of Human Capital 15(3), 400–431.
  25. Inspectorate of Education (2016). De staat van het onderwijs: Onderwijsverslag 2014/2015. Technical report, Inspectie van het Onderwijs.
  26. Inspectorate of Education (2019). Plaatsing en toelating in het VO. Technical report, Inspectie van het Onderwijs.
  27. Inspectorate of Education (2022). Heroverwegen en bijstellen van schooladviezen na de eindtoets. Technical report, Inspectie van het Onderwijs.
  28. Kelley, T. L. (1927). Interpretation of educational measurements. World Book Company.
  29. On the origins of gender gaps in human capital: Short-and long-term consequences of teachers’ biases. Journal of Public Economics 167, 263–279.
  30. Better Together? Heterogeneous Effects of Tracking on Student Achievement. The Economic Journal 131(635), 1269–1307.
  31. Ministry of Education (2023a). De overstap van PO naar VO: Handreiking schooladvisering. Ministerie van Onderwijs, Cultuur en Wetenschap.
  32. Ministry of Education (2023b). Kamerbrief over schooladvisering en doorstroomtoetsen PO 2023, 3 april 2023. Ministerie van Onderwijs, Cultuur en Wetenschap.
  33. Spillover bias in multigenerational income regressions. Journal of Human Resources, 0520–10919R2.
  34. OECD (2016). Netherlands 2016: Foundations for the Future, Reviews of National Policies for Education. OECD publishing.
  35. Teacher expectations matter. Review of Economics and Statistics 102(2), 234–251.
  36. Poorly measured confounders are more useful on the left than on the right. Journal of Business & Economic Statistics 37(2), 205–216.
  37. Reiersøl, O. (1941). Confluence analysis by means of lag moments and other methods of confluence analysis. Econometrica 9(1), 1–24.
  38. Pygmalion in the classroom. The urban review 3(1), 16–20.
  39. Terrier, C. (2020). Boys lag behind: How teachers’ gender biases affect student achievement. Economics of Education Review 77, 101981.
  40. Track recommendation bias: gender, migration background and SES bias over a 20-year period in the Dutch context. British Educational Research Journal 44(5), 847–874.
  41. Triventi, M. (2020). Are children of immigrants graded less generously by their teachers than natives, and why? Evidence from student population data in Italy. International Migration Review 54(3), 765–795.
  42. Wainer, H. and L. M. Brown (2006). 28 Three statistical paradoxes in the interpretation of group differences: Illustrated with medical school admission and licensing data. Handbook of statistics 26, 893–918.
  43. WPO (2014). Artikel 42, lid 2, Wet op het primair onderwijs. Datum inwerkingtreding: 01/08/2014. wetten.overheid.nl.
  44. WVO (2014). Artikel 3, lid 2, Inrichtingsbesluit Wet op het voortgezet onderwijs. Datum inwerkingtreding: 01/08/2014. wetten.overheid.nl.
  45. Can skills differences explain the gap in track recommendation by socio-economic status? Technical report, CPB Netherlands Bureau for Economic Policy Analysis.
Citations (1)

Summary

We haven't generated a summary for this paper yet.