Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Timeline-based Process Discovery (2401.04114v1)

Published 21 Dec 2023 in cs.HC, cs.CV, and cs.LG

Abstract: A key concern of automatic process discovery is to provide insights into performance aspects of business processes. Waiting times are of particular importance in this context. For that reason, it is surprising that current techniques for automatic process discovery generate directly-follows graphs and comparable process models, but often miss the opportunity to explicitly represent the time axis. In this paper, we present an approach for automatically constructing process models that explicitly align with a time axis. We exemplify our approach for directly-follows graphs. Our evaluation using two BPIC datasets and a proprietary dataset highlight the benefits of this representation in comparison to standard layout techniques.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. J. D. Weerdt, M. D. Backer, J. Vanthienen, and B. Baesens, “A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs,” Inf. Syst., vol. 37, no. 7, pp. 654–676, 2012. [Online]. Available: https://doi.org/10.1016/j.is.2012.02.004
  2. A. Polyvyanyy, A. Solti, M. Weidlich, C. D. Ciccio, and J. Mendling, “Monotone precision and recall measures for comparing executions and specifications of dynamic systems,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 29, no. 3, pp. 1–41, 2020.
  3. A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, F. M. Maggi, A. Marrella, M. Mecella, and A. Soo, “Automated discovery of process models from event logs: Review and benchmark,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 4, pp. 686–705, 2019.
  4. A. Yeshchenko and J. Mendling, “A survey of approaches for event sequence analysis and visualization using the esevis framework,” arXiv preprint arXiv:2202.07941, 2022.
  5. V. Denisov, D. Fahland, and W. M. van der Aalst, “Predictive performance monitoring of material handling systems using the performance spectrum,” in 2019 International Conference on Process Mining (ICPM).   IEEE, 2019, pp. 137–144.
  6. E. Marey, “La méthode graphique dans les sciences expérimentales (suite),” Physiologie Expérimentale. G. Masson, 1875.
  7. M. Song and W. M. van der Aalst, “Supporting process mining by showing events at a glance,” in Proceedings of the 17th Annual Workshop on Information Technologies and Systems (WITS), 2007, pp. 139–145.
  8. J. Mendling, “Business process modeling in the 1920s and 1930s as reflected in fritz nordsieck’s phd thesis,” Enterprise Modelling and Information Systems Architectures - International Journal of Conceptual Modelling, 2021.
  9. Y. Guo, S. Guo, Z. Jin, S. Kaul, D. Gotz, and N. Cao, “A survey on visual analysis of event sequence data,” IEEE Transactions on Visualization and Computer Graphics, pp. 1–20, 2021.
  10. Y. Chen, P. Xu, and L. Ren, “Sequence synopsis: Optimize visual summary of temporal event data,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 45–55, 2018.
  11. B. C. Kwon, V. Anand, K. Severson, S. Ghosh, Z. sun, B. Frohnert, M. Lundgren, and K. Ng, “Dpvis: Visual analytics with hidden markov models for disease progression pathways.” IEEE transactions on visualization and computer graphics, 2020.
  12. M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman, “Temporal event sequence simplification,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12, pp. 2227–2236, 2013.
  13. R. A. Leite, T. Gschwandtner, S. Miksch, E. Gstrein, and J. Kuntner, “NEVA: visual analytics to identify fraudulent networks,” Comput. Graph. Forum, vol. 39, no. 6, pp. 344–359, 2020.
  14. M. A. M. M. van Dortmont, S. van den Elzen, and J. J. van Wijk, “Chronocorrelator: Enriching events with time series,” Comput. Graph. Forum, vol. 38, no. 3, pp. 387–399, 2019.
  15. K. Vrotsou, J. Johansson, and M. Cooper, “Activitree: Interactive visual exploration of sequences in event-based data using graph similarity,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 6, pp. 945–952, 2009.
  16. K. Vrotsou, A. Ynnerman, and M. Cooper, “Are we what we do? exploring group behaviour through user-defined event-sequence similarity,” Inf. Vis., vol. 13, no. 3, pp. 232–247, 2014.
  17. P. Rosenthal, L. Pfeiffer, N. H. Müller, and P. Ohler, “Visruption: Intuitive and efficient visualization of temporal airline disruption data,” Comput. Graph. Forum, vol. 32, no. 3, pp. 81–90, 2013.
  18. Y. Han, A. Rozga, N. Dimitrova, G. D. Abowd, and J. T. Stasko, “Visual analysis of proximal temporal relationships of social and communicative behaviors,” Comput. Graph. Forum, vol. 34, no. 3, pp. 51–60, 2015.
  19. P. H. Nguyen, C. Turkay, G. L. Andrienko, N. V. Andrienko, O. Thonnard, and J. Zouaoui, “Understanding user behaviour through action sequences: From the usual to the unusual,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 9, pp. 2838–2852, 2019.
  20. K. Vrotsou and A. Nordman, “Exploratory visual sequence mining based on pattern-growth,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 8, pp. 2597–2610, 2019.
  21. H. Zeng, X. Wang, A. Wu, Y. Wang, Q. Li, A. Endert, and H. Qu, “Emoco: Visual analysis of emotion coherence in presentation videos,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1, pp. 927–937, 2020.
  22. S. Liu, Y. Wu, E. Wei, M. Liu, and Y. Liu, “Storyflow: Tracking the evolution of stories,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12, pp. 2436–2445, 2013.
  23. T. Baumgartl, M. Petzold, M. Wunderlich, M. Hohn, D. Archambault, M. Lieser, A. Dalpke, S. Scheithauer, M. Marschollek, V. M. Eichel, N. T. Mutters, H. Consortium, and T. V. Landesberger, “In search of patient zero: Visual analytics of pathogen transmission pathways in hospitals,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 2, pp. 711–721, 2021.
  24. K. Reda, C. Tantipathananandh, A. E. Johnson, J. Leigh, and T. Y. Berger-Wolf, “Visualizing the evolution of community structures in dynamic social networks,” Comput. Graph. Forum, vol. 30, no. 3, pp. 1061–1070, 2011.
  25. P. Xu, H. Mei, L. Ren, and W. Chen, “Vidx: Visual diagnostics of assembly line performance in smart factories,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 291–300, 2017.
  26. Y. Wu, S. Liu, K. Yan, M. Liu, and F. Wu, “Opinionflow: Visual analysis of opinion diffusion on social media,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 1763–1772, 2014.
  27. C. Sung, X. Huang, Y. Shen, F. Cherng, W. Lin, and H. Wang, “Exploring online learners’ interactive dynamics by visually analyzing their time-anchored comments,” Comput. Graph. Forum, vol. 36, no. 7, pp. 145–155, 2017.
  28. J. Fulda, M. Brehmer, and T. Munzner, “Timelinecurator: Interactive authoring of visual timelines from unstructured text,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 300–309, 2016.
  29. J. Jo, J. Huh, J. Park, B. H. Kim, and J. Seo, “Livegantt: Interactively visualizing a large manufacturing schedule,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 2329–2338, 2014.
  30. Z. Liu, B. Kerr, M. Dontcheva, J. Grover, M. Hoffman, and A. Wilson, “Coreflow: Extracting and visualizing branching patterns from event sequences,” Comput. Graph. Forum, vol. 36, no. 3, pp. 527–538, 2017.
  31. R. P. J. C. Bose and W. M. P. van der Aalst, “Process diagnostics using trace alignment: Opportunities, issues, and challenges,” Inf. Syst., vol. 37, no. 2, pp. 117–141, 2012.
  32. M. de Leoni, M. Adams, W. M. P. van der Aalst, and A. H. M. ter Hofstede, “Visual support for work assignment in process-aware information systems: Framework formalisation and implementation,” Decis. Support Syst., vol. 54, no. 1, pp. 345–361, 2012.
  33. W. Z. Low, W. M. P. van der Aalst, A. H. M. ter Hofstede, M. T. Wynn, and J. D. Weerdt, “Change visualisation: Analysing the resource and timing differences between two event logs,” Inf. Syst., vol. 65, pp. 106–123, 2017.
  34. F. Richter and T. Seidl, “Looking into the TESSERACT: time-drifts in event streams using series of evolving rolling averages of completion times,” Inf. Syst., vol. 84, pp. 265–282, 2019.
  35. S. Suriadi, C. Ouyang, W. M. P. van der Aalst, and A. H. M. ter Hofstede, “Event interval analysis: Why do processes take time?” Decis. Support Syst., vol. 79, pp. 77–98, 2015.
  36. S. Suriadi, M. T. Wynn, J. Xu, W. M. P. van der Aalst, and A. H. M. ter Hofstede, “Discovering work prioritisation patterns from event logs,” Decis. Support Syst., vol. 100, pp. 77–92, 2017.
  37. A. Berti, S. J. van Zelst, and W. M. P. van der Aalst, “Process mining for python (pm4py): Bridging the gap between process- and data science,” CoRR, vol. abs/1905.06169, 2019. [Online]. Available: http://arxiv.org/abs/1905.06169
Citations (1)

Summary

We haven't generated a summary for this paper yet.