Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Primer on Temporal Graph Learning (2401.03988v2)

Published 8 Jan 2024 in cs.LG, cs.AI, cs.DM, cs.SI, and eess.SP

Abstract: This document aims to familiarize readers with temporal graph learning (TGL) through a concept-first approach. We have systematically presented vital concepts essential for understanding the workings of a TGL framework. In addition to qualitative explanations, we have incorporated mathematical formulations where applicable, enhancing the clarity of the text. Since TGL involves temporal and spatial learning, we introduce relevant learning architectures ranging from recurrent and convolutional neural networks to transformers and graph neural networks. We also discuss classical time series forecasting methods to inspire interpretable learning solutions for TGL.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com