Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations (2401.03964v1)

Published 8 Jan 2024 in math.NA and cs.NA

Abstract: We address the numerical treatment of source terms in algebraic flux correction schemes for steady convection-diffusion-reaction (CDR) equations. The proposed algorithm constrains a continuous piecewise-linear finite element approximation using a monolithic convex limiting (MCL) strategy. Failure to discretize the convective derivatives and source terms in a compatible manner produces spurious ripples, e.g., in regions where the coefficients of the continuous problem are constant and the exact solution is linear. We cure this deficiency by incorporating source term components into the fluxes and intermediate states of the MCL procedure. The design of our new limiter is motivated by the desire to preserve simple steady-state equilibria exactly, as in well-balanced schemes for the shallow water equations. The results of our numerical experiments for two-dimensional CDR problems illustrate potential benefits of well-balanced flux limiting in the scalar case.

Summary

We haven't generated a summary for this paper yet.