Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ultra-Dense Cell-Free Massive MIMO for 6G: Technical Overview and Open Questions (2401.03898v3)

Published 8 Jan 2024 in cs.IT, eess.SP, and math.IT

Abstract: Ultra-dense cell-free massive multiple-input multiple-output (CF-MMIMO) has emerged as a promising technology expected to meet the future ubiquitous connectivity requirements and ever-growing data traffic demands in 6G. This article provides a contemporary overview of ultra-dense CF-MMIMO networks, and addresses important unresolved questions on their future deployment. We first present a comprehensive survey of state-of-the-art research on CF-MMIMO and ultra-dense networks. Then, we discuss the key challenges of CF-MMIMO under ultra-dense scenarios such as low-complexity architecture and processing, low-complexity/scalable resource allocation, fronthaul limitation, massive access, synchronization, and channel acquisition. Finally, we answer key open questions, considering different design comparisons and discussing suitable methods dealing with the key challenges of ultra-dense CF-MMIMO. The discussion aims to provide a valuable roadmap for interesting future research directions in this area, facilitating the development of CF-MMIMO MIMO for 6G.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (166)
  1. S. Ohmori, Y. Yamao, and N. Nakajima, “The future generations of mobile communications based on broadband access technologies,” IEEE Commun. Mag., vol. 38, no. 12, pp. 134–142, Dec. 2000.
  2. F. Adachi, “Wireless past and future–Evolving mobile communications systems,” IEICE Trans. Fundamentals of Electron., Commun., Comput. Sciences, vol. 84, no. 1, pp. 55–60, Jan. 2001.
  3. Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo, “Nonorthogonal multiple access for 5G and beyond,” Proc. IEEE, vol. 105, no. 12, pp. 2347–2381, Dec. 2017.
  4. S. Parkvall et al., “5G NR release 16: Start of the 5G evolution,” IEEE Commun. Standards Mag., vol. 4, no. 4, pp. 56–63, Dec. 2020.
  5. G. Liu, Y. Huang, Z. Chen, L. Liu, Q. Wang, and N. Li, “5G deployment: Standalone vs. non-standalone from the operator perspective,” IEEE Commun. Mag., vol. 58, no. 11, pp. 83–89, Nov. 2020.
  6. ITU, “IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond,” Recommendation ITU, Series M, vol. 2083, 2015.
  7. W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards 6G: A comprehensive survey,” IEEE Open J. Commun. Soc., vol. 2, pp. 334–366, 2021.
  8. M. Matthaiou, O. Yurduseven, H. Q. Ngo, D. Morales-Jimenez, S. L. Cotton, and V. F. Fusco, “The road to 6G: Ten physical layer challenges for communications engineers,” IEEE Commun. Mag., vol. 59, no. 1, pp. 64–69, Jan. 2021.
  9. M. A. Uusitalo et al., “6G vision, value, use cases and technologies from european 6G flagship project Hexa-X,” IEEE Access, vol. 9, pp. 160 004–160 020, 2021.
  10. C.-X. Wang et al., “On the road to 6G: Visions, requirements, key technologies and testbeds,” IEEE Commun. Surveys Tuts., 2nd Quart. 2023.
  11. ITU, “ITU-R framework and overall objectives of the future development of IMT for 2030 and beyond,” New recommendation ITU-R, Series M, Nov. 2023. [Online]. Available: https://www.itu.int/rec/R-REC-M.2160-0-202311-I/en
  12. R. Liu, H. Lin, H. Lee, F. Chaves, H. Lim, and J. Sköld, “Beginning of the journey toward 6G: Vision and framework,” IEEE Commun. Mag., vol. 61, no. 10, pp. 8–9, Oct. 2023.
  13. H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO: Uniformly great service for everyone,” in Proc. IEEE Int. Workshop Signal Process. Advances in Wireless Commun. (SPAWC), Jun. 2015, pp. 201–205.
  14. ——, “Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1834–1850, Mar. 2017.
  15. H. Q. Ngo, L.-N. Tran, T. Q. Duong, M. Matthaiou, and E. G. Larsson, “On the total energy efficiency of cell-free massive MIMO,” IEEE Trans. Green Commun. Netw., vol. 2, no. 1, pp. 25–39, Mar. 2018.
  16. G. Interdonato, E. Björnson, H. Quoc Ngo, P. Frenger, and E. G. Larsson, “Ubiquitous cell-free massive MIMO communications,” EURASIP J. Wireless Commun. and Netw., vol. 2019, no. 1, pp. 1–13, 2019.
  17. S. Elhoushy, M. Ibrahim, and W. Hamouda, “Cell-free massive MIMO: A survey,” IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 492–523, 1st Quart. 2021.
  18. Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Foundations of user-centric cell-free massive MIMO,” Foundations and Trends® in Signal Process., vol. 14, no. 3-4, pp. 162–472, 2021, Now Publishers Inc.
  19. J. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, and L. Hanzo, “Cell-free massive MIMO: A new next-generation paradigm,” IEEE Access, vol. 7, pp. 99 878–99 888, 2019.
  20. S. Chen, J. Zhang, J. Zhang, E. Björnson, and B. Ai, “A survey on user-centric cell-free massive MIMO systems,” Digital Commun. Netw., vol. 8, no. 5, pp. 695–719, 2022.
  21. A. J. Paulraj and T. Kailath, “Increasing capacity in wireless broadcast systems using distributed transmission/directional reception (DTDR),” Sep. 1994, US Patent 5,345,599.
  22. G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless communication,” IEEE Trans. Commun., vol. 46, no. 3, pp. 357–366, Mar. 1998.
  23. G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Pers. Commun., vol. 6, pp. 311–335, Mar. 1998.
  24. G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Technical J., vol. 1, no. 2, pp. 41–59, 1996.
  25. P. Viswanath and D. N. C. Tse, “Sum capacity of the vector Gaussian broadcast channel and uplink–downlink duality,” IEEE Trans. Inf. Theory, vol. 49, no. 8, pp. 1912–1921, Aug. 2003.
  26. G. Caire and S. Shamai, “On the achievable throughput of a multiantenna Gaussian broadcast channel,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1691–1706, Jul. 2003.
  27. Y. Tsuji and Y. Tada, “Transmit phase control system of synchronization burst for SDMA/TDMA satellite communication system,” Nov. 1976, US Patent 3,995,111.
  28. T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 528–541, Mar. 2006.
  29. F. Boccardi and H. Huang, “A near-optimum technique using linear precoding for the MIMO broadcast channel,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 3, Apr. 2007, pp. 17–20.
  30. T. L. Marzetta, “How much training is required for multiuser MIMO,” in Proc. Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, USA, Oct. 2006, pp. 359–363.
  31. ——, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, Nov. 2010.
  32. H. Yang and T. L. Marzetta, “Performance of conjugate and zero-forcing beamforming in large-scale antenna systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 172–179, Feb. 2013.
  33. H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans. Commun., vol. 61, no. 4, pp. 1436–1449, Apr. 2013.
  34. Y. Li et al., “Implementation of full-dimensional MIMO (FD-MIMO) in LTE,” in Proc. Asilomar Conf. Signals, Syst., Comput., Nov. 2013, pp. 998–1003.
  35. W. R. Young, “Advanced mobile phone service: Introduction, background, and objectives,” Bell System Technical Journal, vol. 58, no. 1, pp. 1–14, 1979.
  36. A. D. Wyner, “Shannon-theoretic approach to a gaussian cellular multiple-access channel,” IEEE Trans. Inf. Theory, vol. 40, no. 6, pp. 1713–1727, Nov. 1994.
  37. D. Gesbert, S. Hanly, H. Huang, S. Shamai, O. Simeone, and W. Yu, “Multi-cell MIMO cooperative networks: A new look at interference,” IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 1380–1408, Dec. 2010.
  38. A. Lozano, R. W. Heath, and J. G. Andrews, “Fundamental limits of cooperation,” IEEE J. Sel. Areas Commun., vol. 59, no. 9, pp. 5213–5226, Sep. 2013.
  39. A. Tölli, M. Codreanu, and M. Juntti, “Cooperative MIMO-OFDM cellular system with soft handover between distributed base station antennas,” IEEE Trans. Wireless Commun., vol. 7, no. 4, pp. 1428–1440, Apr. 2008.
  40. I. D. Garcia, N. Kusashima, K. Sakaguchi, and K. Araki, “Dynamic cooperation set clustering on base station cooperation cellular networks,” in Proc. IEEE Int. Symp. Personal, Indoor, Mobile Radio Commun. (PIMRC), Sep. 2010, pp. 2127–2132.
  41. R. Fantini et al., “Coordinated multi-point transmission in 5G,” in 5G Mobile and Wireless Communications Technology.   Cambridge University Press Cambridge, 2016, pp. 248–276.
  42. G. Interdonato, P. Frenger, and E. G. Larsson, “Scalability aspects of cell-free massive MIMO,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–6.
  43. E. Björnson and L. Sanguinetti, “Scalable cell-free massive MIMO systems,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4247–4261, Jul. 2020.
  44. E. Björnson and E. Jorswieck, “Optimal resource allocation in coordinated multi-cell systems,” Foundations and Trends® in Commun. and Inf. Theory, vol. 9, no. 2-3, pp. 113–381, 2013, Now Publishers Inc.
  45. G. Caire, S. Ramprashad, and H. Papadopoulos, “Rethinking network MIMO: Cost of CSIT, performance analysis, and architecture comparisons,” in Inf. Theory and Appl. Workshop (ITA), Jan. 2010, pp. 1–10.
  46. S. Buzzi, C. D’Andrea, A. Zappone, and C. D’Elia, “User-centric 5G cellular networks: Resource allocation and comparison with the cell-free massive MIMO approach,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 1250–1264, Feb. 2020.
  47. M. Attarifar, A. Abbasfar, and A. Lozano, “Subset MMSE receivers for cell-free networks,” IEEE Trans. Wireless Commun., vol. 19, no. 6, pp. 4183–4194, Jun. 2020.
  48. F. Riera-Palou, G. Femenias, A. G. Armada, and A. Pérez-Neira, “Clustered cell-free massive MIMO,” in Proc. IEEE Global Commun. Conf. Workshops (GLOBECOM Wkshps), 2018, pp. 1–6.
  49. E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, and B. D. Rao, “Precoding and power optimization in cell-free massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4445–4459, Jul. 2017.
  50. G. Femenias, F. Riera-Palou, A. Alvarez-Polegre, and A. Garcia-Armada, “Short-term power constrained cell-free massive-MIMO over spatially correlated Ricean fading,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 15 200–15 215, Dec. 2020.
  51. G. Interdonato, H. Q. Ngo, and E. G. Larsson, “Enhanced normalized conjugate beamforming for cell-free massive MIMO,” IEEE Trans. Commun., vol. 69, no. 5, pp. 2863–2877, May 2021.
  52. M. Bashar, P. Xiao, R. Tafazolli, K. Cumanan, A. G. Burr, and E. Björnson, “Limited-fronthaul cell-free massive MIMO with local MMSE receiver under Rician fading and phase shifts,” IEEE wireless communications letters, vol. 10, no. 9, pp. 1934–1938, 2021.
  53. G. Interdonato, M. Karlsson, E. Björnson, and E. G. Larsson, “Local partial zero-forcing precoding for cell-free massive MIMO,” IEEE Trans. Wireless Commun., vol. 19, no. 7, pp. 4758–4774, 2020.
  54. M. Attarifar, A. Abbasfar, and A. Lozano, “Modified conjugate beamforming for cell-free massive MIMO,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 616–619, Apr. 2019.
  55. P. Liu, K. Luo, D. Chen, and T. Jiang, “Spectral efficiency analysis of cell-free massive MIMO systems with zero-forcing detector,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 795–807, Feb. 2020.
  56. E. Björnson and L. Sanguinetti, “Making cell-free massive MIMO competitive with MMSE processing and centralized implementation,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 77–90, Jan. 2020.
  57. L. Du, L. Li, H. Q. Ngo, T. C. Mai, and M. Matthaiou, “Cell-free massive MIMO: Joint maximum-ratio and zero-forcing precoder with power control,” IEEE Trans. Commun., vol. 69, no. 6, pp. 3741–3756, Jun. 2021.
  58. A. Gotsis, S. Stefanatos, and A. Alexiou, “Ultradense networks: The new wireless frontier for enabling 5G access,” IEEE Veh. Technol. Mag., vol. 11, no. 2, pp. 71–78, Jun. 2016.
  59. J. Liu, M. Sheng, L. Liu, and J. Li, “Network densification in 5G: From the short-range communications perspective,” IEEE Commun. Mag., vol. 55, no. 12, pp. 96–102, Dec. 2017.
  60. V. M. Nguyen and M. Kountouris, “Performance limits of network densification,” IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1294–1308, Jun. 2017.
  61. A. K. Gupta, X. Zhang, and J. G. Andrews, “SINR and throughput scaling in ultradense urban cellular networks,” IEEE Wireless Commun. Lett., vol. 4, no. 6, pp. 605–608, Dec. 2015.
  62. X. Zhang and J. G. Andrews, “Downlink cellular network analysis with multi-slope path loss models,” IEEE Trans. Commun., vol. 63, no. 5, pp. 1881–94, May 2015.
  63. A. AlAmmouri, J. G. Andrews, and F. Baccelli, “A unified asymptotic analysis of area spectral efficiency in ultradense cellular networks,” IEEE Trans. Inf. Theory, vol. 65, no. 2, pp. 1236–1248, Feb. 2018.
  64. J. G. Andrews, X. Zhang, G. D. Durgin, and A. K. Gupta, “Are we approaching the fundamental limits of wireless network densification?” IEEE Commun. Mag., vol. 54, no. 10, pp. 184–190, Oct. 2016.
  65. T. Bai and R. W. Heath Jr., “Coverage and rate analysis for millimeter wave cellular networks,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 1100–1114, Feb. 2015.
  66. A. AlAmmouri, J. G. Andrews, and F. Baccelli, “Scaling laws of dense multi-antenna cellular networks,” in Proc. Asilomar Conf. Signals, Syst., Comput., Nov. 2020, pp. 1041–1045.
  67. N. Lee, R. W. Heath Jr., D. Morales-Jimenez, and A. Lozano, “Base station cooperation with dynamic clustering in super-dense cloud-RAN,” in Proc. IEEE Global Commun. Conf. Workshops (GLOBECOM Wkshps), Dec. 2013, pp. 784–788.
  68. N. Bhushan et al., “Network densification: The dominant theme for wireless evolution into 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 82–89, Feb. 2014.
  69. J. G. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. C. Reed, “Femtocells: Past, present, and future,” IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 497–508, Apr. 2012.
  70. A. Ghosh et al., “Heterogeneous cellular networks: From theory to practice,” IEEE Commun. Mag., vol. 50, no. 6, pp. 54–64, Jun. 2012.
  71. M. Cudak, A. Ghosh, A. Ghosh, and J. Andrews, “Integrated access and backhaul: A key enabler for 5G millimeter-wave deployments,” IEEE Commun. Mag., vol. 59, no. 4, pp. 88–94, Apr. 2021.
  72. Y. A. Sambo, F. Héliot, and M. A. Imran, “A survey and tutorial of electromagnetic radiation and reduction in mobile communication systems,” IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 790–802, 2nd Quart. 2015.
  73. M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Understanding O-RAN: Architecture, interfaces, algorithms, security, and research challenges,” IEEE Commun. Surveys Tuts., pp. 1376–1411, 2nd Quart. 2023.
  74. M. Polese et al., “Empowering the 6G cellular architecture with Open RAN,” IEEE J. Sel. Areas Commun., 2023, early access.
  75. C. Hao, T. T. Vu, H. Q. Ngo, M. N. Dao, X. Dang, and M. Matthaiou, “User association and power control in cell-free massive MIMO with the APG method,” in Proc. European Signal Process. Conf. (EUSIPCO), Sep. 2023, pp. 1469–1473.
  76. F. Riera-Palou and G. Femenias, “Decentralization issues in cell-free massive MIMO networks with zero-forcing precoding,” in Proc. Allerton Conf. Commun., Control, Comput. (Allerton), Sep. 2019, pp. 521–527.
  77. A. S. Abdalla, P. S. Upadhyaya, V. K. Shah, and V. Marojevic, “Toward next generation open radio access networks: What O-RAN can and cannot do!” IEEE Netw., vol. 36, no. 6, pp. 206–213, Nov. 2022.
  78. V. Ranjbar, A. Girycki, M. A. Rahman, S. Pollin, M. Moonen, and E. Vinogradov, “Cell-free mMIMO support in the O-RAN architecture: A PHY layer perspective for 5G and beyond networks,” IEEE Commun. Standards Mag., vol. 6, no. 1, pp. 28–34, Mar. 2022.
  79. A. Garcia-Saavedra and X. Costa-Perez, “O-RAN: Disrupting the virtualized RAN ecosystem,” IEEE Commun. Standards Mag., vol. 5, no. 4, pp. 96–103, Dec. 2021.
  80. Y. Huang et al., “Validation of current O-RAN technologies and insights on the future evolution,” IEEE J. Sel. Areas Commun., 2023, early access.
  81. R. Rogalin et al., “Scalable synchronization and reciprocity calibration for distributed multiuser MIMO,” IEEE Trans. Wireless Commun., vol. 13, no. 4, pp. 1815–1831, Apr. 2014.
  82. Y. Cao et al., “Experimental performance evaluation of cell-free massive MIMO systems using COTS RRU with OTA reciprocity calibration and phase synchronization,” IEEE J. Sel. Areas Commun., pp. 1620–1634, Jun. 2023.
  83. Ö. T. Demir, M. Masoudi, E. Björnson, and C. Cavdar, “Cell-free massive MIMO in O-RAN: Energy-aware joint orchestration of cloud, fronthaul, and radio resources,” IEEE J. Sel. Areas Commun., 2024.
  84. M. S. Oh, A. B. Das, S. Hosseinalipour, T. Kim, D. J. Love, and C. G. Brinton, “A decentralized pilot assignment algorithm for scalable O-RAN cell-free massive MIMO,” IEEE J. Sel. Areas Commun., 2023.
  85. F. Göttsch, N. Osawa, T. Ohseki, K. Yamazaki, and G. Caire, “Uplink-downlink duality and precoding strategies with partial CSI in cell-free wireless networks,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2022, pp. 614–619.
  86. M. Bashar, K. Cumanan, A. G. Burr, H. Q. Ngo, and H. V. Poor, “Mixed quality of service in cell-free massive MIMO,” IEEE Commun. Lett., vol. 22, no. 7, pp. 1494–1497, Jul. 2018.
  87. F. Göttsch, N. Osawa, T. Ohseki, K. Yamazaki, and G. Caire, “Subspace-based pilot decontamination in user-centric scalable cell-free wireless networks,” IEEE Trans. Wireless Commun., vol. 22, no. 6, pp. 4117–4131, Jun. 2022.
  88. J. Zheng, J. Zhang, and B. Ai, “Team-optimal MMSE combining for cell-free massive MIMO systems,” in Proc. IEEE International Conference on Communications (ICC), 2022, pp. 1306–1311.
  89. L. Miretti, E. Björnson, and D. Gesbert, “Team precoding towards scalable cell-free massive MIMO networks,” in Proc. Asilomar Conf. Signals, Syst., Comput., Nov. 2021, pp. 1222–1227.
  90. L. Miretti, E. Björnson, and D. Gesbert, “Team MMSE precoding with applications to cell-free massive MIMO,” IEEE Trans. Wireless Commun., vol. 21, no. 8, pp. 6242–6255, Aug. 2022.
  91. E. Nayebi, A. Ashikhmin, T. L. Marzetta, and B. D. Rao, “Performance of cell-free massive MIMO systems with MMSE and LSFD receivers,” in Proc. Asilomar Conf. Signals, Syst., Comput., Nov. 2016, pp. 203–207.
  92. M. Bashar, K. Cumanan, A. G. Burr, M. Debbah, and H. Q. Ngo, “On the uplink max-min SINR of cell-free massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 18, no. 4, pp. 2021–2036, Apr. 2019.
  93. L. Miretti, R. L. Cavalcante, E. Björnson, and S. Stańczak, “UL-DL duality for cell-free massive MIMO with per-AP power and information constraints,” arXiv preprint: arXiv:2301.06520, 2023.
  94. Z. Li, F. Göttsch, S. Li, M. Chen, and G. Caire, “Joint fronthaul load balancing and computation resource allocation in cell-free user-centric massive MIMO networks,” arXiv preprint arXiv:2310.14911, 2023.
  95. H. Q. Ngo and E. G. Larsson, “No downlink pilots are needed in TDD massive MIMO,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 2921–2935, May 2017.
  96. E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks: Spectral, energy, and hardware efficiency,” Foundations and Trends® in Signal Process., vol. 11, no. 3-4, pp. 154–655, 2017, Now Publishers Inc.
  97. T. Van Chien, H. Q. Ngo, S. Chatzinotas, M. Di Renzo, and B. Ottersten, “Reconfigurable intelligent surface-assisted cell-free massive MIMO systems over spatially-correlated channels,” IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 5106–5128, Jul. 2021.
  98. A. Chowdhury, R. Chopra, and C. R. Murthy, “Can dynamic TDD enabled half-duplex cell-free massive MIMO outperform full-duplex cellular massive MIMO?” IEEE Trans. Commun., vol. 70, no. 7, pp. 4867–4883, Jul. 2022.
  99. J. Zheng, J. Zhang, H. Du, D. Niyato, D. I. Kim, and B. Ai, “Rate-splitting for CF massive MIMO systems with channel aging,” IEEE Trans. Veh. Technol., 2023, early access.
  100. Z. Chen and E. Björnson, “Channel hardening and favorable propagation in cell-free massive MIMO with stochastic geometry,” IEEE Trans. Commun., vol. 66, no. 11, pp. 5205–5219, Nov. 2018.
  101. A. Á. Polegre, F. Riera-Palou, G. Femenias, and A. G. Armada, “New insights on channel hardening in cell-free massive MIMO networks,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC Wkshps), Jun. 2020, pp. 1–7.
  102. G. Interdonato, H. Q. Ngo, E. G. Larsson, and P. Frenger, “On the performance of cell-free massive MIMO with short-term power constraints,” in Proc. IEEE Int. Workshop Comput. Aided Modelling, Design of Commun. Links, Netw. (CAMAD), Oct. 2016, pp. 225–230.
  103. G. Interdonato and S. Buzzi, “Conjugate beamforming with fractional-exponent normalization and scalable power control in cell-free massive MIMO,” in Proc. IEEE Int. Workshop Signal Process. Advances in Wireless Commun. (SPAWC), Sep. 2021, pp. 396–400.
  104. H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Massive MU-MIMO downlink TDD systems with linear precoding and downlink pilots,” in Proc. Allerton Conf. Commun., Control, Comput. (Allerton), Oct. 2013, pp. 293–298.
  105. G. Interdonato, H. Q. Ngo, P. Frenger, and E. G. Larsson, “Downlink training in cell-free massive MIMO: A blessing in disguise,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5153–5169, Nov. 2019.
  106. D. D. Souza, M. M. Freitas, G. S. Borges, A. M. Cavalcante, D. B. da Costa, and J. C. Costa, “Effective channel blind estimation in cell-free massive MIMO networks,” IEEE Wireless Commun. Lett., vol. 11, no. 3, pp. 468–472, Mar. 2021.
  107. G. Caire, “On the ergodic rate lower bounds with applications to massive MIMO,” IEEE Trans. Wireless Commun., vol. 17, no. 5, pp. 3258–3268, May 2018.
  108. J. A. Sutton, H. Q. Ngo, and M. Matthaiou, “Hardening the channels by precoder design in massive MIMO with multiple-antenna users,” IEEE Trans. Veh. Technol., vol. 70, no. 5, pp. 4541–4556, May 2021.
  109. G. Pottie and A. Calderbank, “Channel coding strategies for cellular radio,” IEEE Trans. Veh. Technol., vol. 44, no. 4, pp. 763–770, Nov. 1995.
  110. H. Xu, C. Caramanis, and S. Sanghavi, “Robust PCA via outlier pursuit,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 3047–3064, May 2012.
  111. E. G. Larsson and J. Vieira, “Phase calibration of distributed antenna arrays,” IEEE Commun. Lett., vol. 27, no. 6, pp. 1619–1623, Jun. 2023.
  112. R. Nissel, “Correctly modeling TX and RX chain in (distributed) massive MIMO – new fundamental insights on coherency,” IEEE Commun. Lett., vol. 26, no. 10, pp. 2465–2469, Oct. 2022.
  113. H. V. Balan, R. Rogalin, A. Michaloliakos, K. Psounis, and G. Caire, “AirSync: Enabling distributed multiuser MIMO with full spatial multiplexing,” IEEE/ACM Trans. Netw., vol. 21, no. 6, pp. 1681–1695, Dec. 2013.
  114. J. Vieira and E. G. Larsson, “Reciprocity calibration of distributed massive MIMO access points for coherent operation,” in Proc. IEEE Int. Symp. Personal, Indoor, Mobile Radio Commun. (PIMRC), Sep. 2021, pp. 783–787.
  115. U. K. Ganesan, R. Sarvendranath, and E. G. Larsson, “Beamsync: Over-the-air synchronization for distributed massive MIMO systems,” IEEE Trans. Wireless Commun., 2023, early access.
  116. R. Nikbakht, R. Mosayebi, and A. Lozano, “Uplink fractional power control and downlink power allocation for cell-free networks,” IEEE Wireless Commun. Lett., vol. 9, no. 6, pp. 774–777, Jun. 2020.
  117. E. Björnson and P. Giselsson, “Two applications of deep learning in the physical layer of communication systems [Lecture Notes],” IEEE Signal Process. Mag., vol. 37, no. 5, pp. 134–140, Sep. 2020.
  118. Y. Zhao, I. G. Niemegeers, and S. H. De Groot, “Power allocation in cell-free massive MIMO: A deep learning method,” IEEE Access, vol. 8, pp. 87 185–87 200, May 2020.
  119. S. Chakraborty, E. Björnson, and L. Sanguinetti, “Centralized and distributed power allocation for max-min fairness in cell-free massive MIMO,” in Proc. Asilomar Conf. Signals, Syst., Comput., Nov. 2019, pp. 576–580.
  120. R. Nikbakht, A. Jonsson, and A. Lozano, “Unsupervised-learning power control for cell-free wireless systems,” in Proc. IEEE Int. Symp. Personal, Indoor, Mobile Radio Commun. (PIMRC), Sep. 2019, pp. 1–5.
  121. C. D’Andrea, A. Zappone, S. Buzzi, and M. Debbah, “Uplink power control in cell-free massive MIMO via deep learning,” in Proc. IEEE Int. Workshop Comput. Advances Multi-Sensor Adaptive Process. (CAMSAP), Dec. 2019, pp. 554–558.
  122. M. Bashar et al., “Exploiting deep learning in limited-fronthaul cell-free massive MIMO uplink,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1678–1697, Aug. 2020.
  123. S. Chakraborty and B. R. Manoj, “Power allocation in a cell-free MIMO system using reinforcement learning-based approach,” in Proc. of National Conf. on Commun. (NCC), Feb. 2023, pp. 1–6.
  124. C. Bockelmann et al., “Massive machine-type communications in 5G: Physical and MAC-layer solutions,” IEEE Commun. Mag., vol. 54, no. 9, pp. 59–65, Sep. 2016.
  125. F. Boccardi, R. W. Heath, Jr., A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 74–80, Feb. 2014.
  126. X. Chen, D. W. K. Ng, W. Yu, E. G. Larsson, N. Al-Dhahir, and R. Schober, “Massive access for 5G and beyond,” IEEE J. Sel. Areas Commun., vol. 39, no. 3, pp. 615–637, Mar. 2020.
  127. J. W. Choi, B. Shim, and S.-H. Chang, “Downlink pilot reduction for massive MIMO systems via compressed sensing,” IEEE Commun. Lett., vol. 19, no. 11, pp. 1889–1892, Nov. 2015.
  128. Z. Gao, L. Dai, Z. Wang, S. Chen, and L. Hanzo, “Compressive-sensing-based multiuser detector for the large-scale SM-MIMO uplink,” IEEE Trans. Veh. Technol., vol. 65, no. 10, pp. 8725–8730, Oct. 2016.
  129. L. Liu and W. Yu, “Massive connectivity with massive MIMO—Part I: Device activity detection and channel estimation,” IEEE Trans. Signal Process., vol. 66, no. 11, pp. 2933–2946, 2018.
  130. D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. of the National Academy of Sciences, vol. 106, no. 45, pp. 18 914–18 919, 2009.
  131. M. Ke, Z. Gao, Y. Wu, X. Gao, and R. Schober, “Compressive sensing-based adaptive active user detection and channel estimation: Massive access meets massive MIMO,” IEEE Trans. Signal Process., vol. 68, pp. 764–779, 2020.
  132. P. Han, R. Niu, M. Ren, and Y. C. Eldar, “Distributed approximate message passing for sparse signal recovery,” in Global Conf. Signal, Inf. Process. (GlobalSIP), Dec. 2014, pp. 497–501.
  133. M. Guo and M. C. Gursoy, “Joint activity detection and channel estimation in cell-free massive MIMO networks with massive connectivity,” IEEE Trans. Commun., vol. 70, no. 1, pp. 317–331, Jan. 2022.
  134. J. Bai and E. G. Larsson, “Activity detection in distributed MIMO: Distributed AMP via likelihood ratio fusion,” IEEE Wireless Commun. Lett., vol. 11, no. 10, pp. 2200–2204, Oct. 2022.
  135. Z. Chen, F. Sohrabi, and W. Yu, “Sparse activity detection in multi-cell massive MIMO exploiting channel large-scale fading,” IEEE Trans. Signal Process., vol. 69, pp. 3768––3781, 2021.
  136. A. Fengler, S. Haghighatshoar, P. Jung, and G. Caire, “Non-Bayesian activity detection, large-scale fading coefficient estimation, and unsourced random access with a massive MIMO receiver,” IEEE Trans. Inf. Theory, vol. 67, no. 5, pp. 2925–2951, May 2021.
  137. U. K. Ganesan, E. Björnson, and E. G. Larsson, “Clustering-based activity detection algorithms for grant-free random access in cell-free massive MIMO,” IEEE Trans. Commun., vol. 69, no. 11, pp. 7520–7530, Nov. 2021.
  138. S. Chen, J. Zhang, E. Björnson, and B. Ai, “Improving fairness for cell-free massive MIMO through interference-aware massive access,” IEEE Trans. Veh. Technol., vol. 72, no. 4, pp. 5468–5472, Apr. 2023.
  139. ITU-R, “Minimum requirements related to technical performance for IMT-2020 radio interface(s),” ITU-R, Report M.2410-0, Nov. 2017.
  140. G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and low-latency wireless communication with short packets,” Proc. IEEE, vol. 104, no. 9, pp. 1711–1726, Sep. 2016.
  141. A. Forenza, S. Perlman, F. Saibi, M. Di Dio, R. van der Laan, and G. Caire, “Achieving large multiplexing gain in distributed antenna systems via cooperation with pCell technology,” in Proc. Asilomar Conf. Signals, Syst., Comput., Nov. 2015, pp. 286–293.
  142. F. Göttsch, N. Osawa, I. Kanno, T. Ohseki, and G. Caire, “Fairness scheduling in user-centric cell-free massive MIMO wireless networks,” arXiv preprint arXiv:2307.00850, 2023.
  143. E. Biglieri, J. Proakis, and S. Shamai, “Fading channels: Information-theoretic and communications aspects,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2619–2692, Oct. 1998.
  144. J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567, Oct. 2000.
  145. M. J. Neely, E. Modiano, and C.-P. Li, “Fairness and optimal stochastic control for heterogeneous networks,” IEEE/ACM Trans. Netw., vol. 16, no. 2, pp. 396–409, Apr. 2008.
  146. H. Shirani-Mehr, G. Caire, and M. J. Neely, “MIMO downlink scheduling with non-perfect channel state knowledge,” IEEE Trans. Commun., vol. 58, no. 7, pp. 2055–2066, Jul. 2010.
  147. S. Perlman and A. Forenza, “An introduction to pCell,” Artemis Networks LLC, White paper, 2015. [Online]. Available: http://www.rearden.com/artemis/An-Introduction-to-pCell-White-Paper-150224.pdf
  148. P. Frenger, J. Hederen, M. Hessler, and G. Interdonato, “Antenna arrangement for distributed massive MIMO,” US Patent App. 16/435,054, 2019. [Online]. Available: https://patents.google.com/patent/US20190363763A1
  149. L. Van der Perre, E. Larsson, F. Tufvesson, L. D. Strycker, E. Björnson, and O. Edfors, “Radioweaves for efficient connectivity: Analysis and impact of constraints in actual deployments,” in Proc. Asilomar Conf. Signals, Syst., Comput., Nov. 2019, pp. 15–22.
  150. Z. H. Shaik, E. Björnson, and E. G. Larsson, “MMSE-Optimal sequential processing for cell-free massive MIMO with Radio Stripes,” IEEE Trans. Commun., vol. 69, no. 11, pp. 7775–7789, Nov. 2021.
  151. L. Miretti, E. Björnson, and D. Gesbert, “Precoding for scalable cell-free massive MIMO with Radio Stripes,” in Proc. IEEE Int. Workshop Signal Process. Advances in Wireless Commun. (SPAWC), Sep. 2021, pp. 411–415.
  152. U. Gustavsson et al., “Implementation challenges and opportunities in beyond-5G and 6G communication,” IEEE J. of Microwaves, vol. 1, no. 1, pp. 86–100, Jan. 2021.
  153. D. Apostolopoulos, G. Giannoulis, N. Argyris, N. Iliadis, K. Kanta, and H. Avramopoulos, “Analog radio-over-fiber solutions in support of 5G,” in Proc. of Int. Conf. on Optical Netw. Design and Modeling (ONDM), May 2018, pp. 266–271.
  154. I. C. Sezgin, T. Eriksson, J. Gustavsson, and C. Fager, “A flexible multi-Gbps transmitter using ultra-high speed Sigma- Delta-over- fiber,” in Proc. of IEEE/MTT-S Int. Microwave Symp. (IMS), Jun. 2018, pp. 1195–1198.
  155. U. K. Ganesan, E. Björnson, and E. G. Larsson, “Radioweaves for extreme spatial multiplexing in indoor environments,” in Proc. Asilomar Conf. Signals, Syst., Comput., Nov. 2020, pp. 1007–1011.
  156. J. Zhang, J. Zhang, E. Björnson, and B. Ai, “Local partial zero-forcing combining for cell-free massive MIMO systems,” IEEE Trans. Commun., vol. 69, no. 12, pp. 8459–8473, Dec. 2021.
  157. I. Atzeni, B. Gouda, and A. Tölli, “Distributed precoding design via over-the-air signaling for cell-free massive MIMO,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1201–1216, Feb. 2021.
  158. E. G. Larsson and L. Van der Perre, “Out-of-band radiation from antenna arrays clarified,” IEEE Trans. Wireless Commun., vol. 7, no. 4, pp. 610–613, Aug. 2018.
  159. C. Mollén, U. Gustavsson, T. Eriksson, and E. G. Larsson, “Spatial characteristics of distortion radiated from antenna arrays with transceiver nonlinearities,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6663–6679, Oct. 2018.
  160. F. Rottenberg, G. Callebaut, and L. Van der Perre, “Spatial distribution of distortion due to nonlinear power amplification in distributed massive MIMO,” in Proc. IEEE Int. Workshop Signal Process. Advances in Wireless Commun. (SPAWC), Sep. 2021, pp. 76–80.
  161. ——, “The Z3RO family of precoders cancelling nonlinear power amplification distortion in large array systems,” IEEE Trans. Wireless Commun., vol. 22, no. 3, pp. 2036–2047, Mar. 2022.
  162. T. Feys, X. Mestre, and F. Rottenberg, “Self-supervised learning of linear precoders under non-linear PA distortion for energy-efficient massive MIMO systems,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2023, pp. 6367–6372.
  163. J. Zhang, Y. Wei, E. Björnson, Y. Han, and S. Jin, “Performance analysis and power control of cell-free massive MIMO systems with hardware impairments,” IEEE Access, vol. 6, pp. 55 302–55 314, Sep. 2018.
  164. S. Elhoushy and W. Hamouda, “Performance of distributed massive MIMO and small-cell systems under hardware and channel impairments,” IEEE Trans. Veh. Technol., vol. 69, no. 8, pp. 8627–8642, Aug. 2020.
  165. H. Masoumi and M. J. Emadi, “Performance analysis of cell-free massive MIMO system with limited fronthaul capacity and hardware impairments,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 1038–1053, Feb. 2020.
  166. J. Zheng, J. Zhang, L. Zhang, X. Zhang, and B. Ai, “Efficient receiver design for uplink cell-free massive MIMO with hardware impairments,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 4537–4541, Apr. 2020.
Citations (19)

Summary

We haven't generated a summary for this paper yet.