Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Oblivious LWE Sampling and Insecurity of Standard Model Lattice-Based SNARKs (2401.03807v2)

Published 8 Jan 2024 in cs.CR

Abstract: The Learning With Errors ($\mathsf{LWE}$) problem asks to find $\mathbf{s}$ from an input of the form $(\mathbf{A}, \mathbf{b} = \mathbf{A}\mathbf{s}+\mathbf{e}) \in (\mathbb{Z}/q\mathbb{Z}){m \times n} \times (\mathbb{Z}/q\mathbb{Z}){m}$, for a vector $\mathbf{e}$ that has small-magnitude entries. In this work, we do not focus on solving $\mathsf{LWE}$ but on the task of sampling instances. As these are extremely sparse in their range, it may seem plausible that the only way to proceed is to first create $\mathbf{s}$ and $\mathbf{e}$ and then set $\mathbf{b} = \mathbf{A}\mathbf{s}+\mathbf{e}$. In particular, such an instance sampler knows the solution. This raises the question whether it is possible to obliviously sample $(\mathbf{A}, \mathbf{A}\mathbf{s}+\mathbf{e})$, namely, without knowing the underlying $\mathbf{s}$. A variant of the assumption that oblivious $\mathsf{LWE}$ sampling is hard has been used in a series of works to analyze the security of candidate constructions of Succinct Non interactive Arguments of Knowledge (SNARKs). As the assumption is related to $\mathsf{LWE}$, these SNARKs have been conjectured to be secure in the presence of quantum adversaries. Our main result is a quantum polynomial-time algorithm that samples well-distributed $\mathsf{LWE}$ instances while provably not knowing the solution, under the assumption that $\mathsf{LWE}$ is hard. Moreover, the approach works for a vast range of $\mathsf{LWE}$ parametrizations, including those used in the above-mentioned SNARKs. This invalidates the assumptions used in their security analyses, although it does not yield attacks against the constructions themselves.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com