Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayes Factor of Zero Inflated Models under Jeffereys Prior (2401.03649v1)

Published 8 Jan 2024 in stat.ME, stat.AP, and stat.CO

Abstract: Microbiome omics data including 16S rRNA reveal intriguing dynamic associations between the human microbiome and various disease states. Drastic changes in microbiota can be associated with factors like diet, hormonal cycles, diseases, and medical interventions. Along with the identification of specific bacteria taxa associated with diseases, recent advancements give evidence that metabolism, genetics, and environmental factors can model these microbial effects. However, the current analytic methods for integrating microbiome data are fully developed to address the main challenges of longitudinal metagenomics data, such as high-dimensionality, intra-sample dependence, and zero-inflation of observed counts. Hence, we propose the Bayes factor approach for model selection based on negative binomial, Poisson, zero-inflated negative binomial, and zero-inflated Poisson models with non-informative Jeffreys prior. We find that both in simulation studies and real data analysis, our Bayes factor remarkably outperform traditional Akaike information criterion and Vuong's test. A new R package BFZINBZIP has been introduced to do simulation study and real data analysis to facilitate Bayesian model selection based on the Bayes factor.

Citations (7)

Summary

We haven't generated a summary for this paper yet.