Fast and high-fidelity dispersive readout of a spin qubit via squeezing and resonator nonlinearity (2401.03617v1)
Abstract: Fast and high-fidelity qubit measurement is crucial for achieving quantum error correction, a fundamental element in the development of universal quantum computing. For electron spin qubits, fast readout stands out as a major obstacle in the pursuit of error correction. In this work, we explore the dispersive measurement of an individual spin in a semiconductor double quantum dot coupled to a nonlinear microwave resonator. By utilizing displaced squeezed vacuum states, we achieve rapid and high-fidelity readout for semiconductor spin qubits. Our findings reveal that introducing modest squeezing and mild nonlinearity can significantly improve both the signal-to-noise ratio (SNR) and the fidelity of qubit-state readout. By properly marching the phases of squeezing, the nonlinear strength, and the local oscillator, the optimal readout time can be reduced to the sub-microsecond range. With current technology parameters ($\kappa\approx 2\chi_s$, $\chi_s\approx 2\pi\times 0.15 :\mbox{MHz}$), utilizing a displaced squeezed vacuum state with $30$ photons and a modest squeezing parameter $r\approx 0.6$, along with a nonlinear microwave resonator charactered by a strength of $\lambda\approx -1.2 \chi_s$, a readout fidelity of $98\%$ can be attained within a readout time of around $0.6:\mu\mbox{s}$. Intriguing, by using a positive nonlinear strength of $\lambda\approx 1.2\chi_s$, it is possible to achieve an SNR of approximately $6$ and a readout fidelity of $99.99\%$ at a slightly later time, around $0.9:\mu\mbox{s}$, while maintaining all other parameters at the same settings.
- S. Takeda and A. Furusawa, APL Photonics 4, 060902 (2019).
- H. Riel, Quantum Computing Technology and Roadmap, IEEE 52nd European Solid-State Device Research Conference 306, 25 (2022).
- B. M. Terhal, Rev. Mod. Phys. 87, 307 (2015).
- A. Saraiva and S. D. Bartlett, Nat. Mater. 1 (2022).
- L. M. K. Vandersypen and M. A. Eriksson, Phys. Today 72, 38 (2019).
- R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504 (2007).
- E. J. Connors, J. J. Nelson, and J. M. Nichol, Phys. Rev. Appl. 13, 024019 (2020).
- C. Lyu, C. Lv, and Q. Zhou, Phys. Rev. Lett. 125, 253401 (2020).
- S. E. Dwyer, G. L. Mansell, and L. McCuller, Galaxies 10, 46 (2022).
- S. Barzanjeh, D. P. DiVincenzo, and B. M. Terhal, Phys. Rev. B 90, 134515 (2014).
- N. Didier, J. Bourassa, and A. Blais, Phys. Rev. Lett. 115, 203601 (2015).
- C. F. Kam, and X. D. Hu, arXiv preprint arXiv:2312.10820
- L. C. G. Govia and A. A. Clerk, New J. Phys. 19, 023044 (2017).
- B. D’Anjou and G. Burkard, Phys. Rev. B 100, 245427 (2019).
- C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985).
- C. Gardiner and P. Zoller, Quantum noise (Springer, 2004).
- D. F. Walls, Nature 306, 141 (1983).
- W. M. Zhang, R. Gilmore, and D. H. Feng, Rev. Mod. Phys. 4, 867 (1990).
- H. P. Yuen, and V. W. S. Chan, Opt. Lett. 8, 177 (1983).
- L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge university press, 1995).