Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An improved Quantum Max Cut approximation via matching (2401.03616v2)

Published 8 Jan 2024 in quant-ph

Abstract: Finding a high (or low) energy state of a given quantum Hamiltonian is a potential area to gain a provable and practical quantum advantage. A line of recent studies focuses on Quantum Max Cut, where one is asked to find a high energy state of a given antiferromagnetic Heisenberg Hamiltonian. In this work, we present a classical approximation algorithm for Quantum Max Cut that achieves an approximation ratio of 0.584 given a generic input, and a ratio of 0.595 given a triangle-free input, outperforming the previous best algorithms of Lee \cite{Lee22} (0.562, generic input) and King \cite{King22} (0.582, triangle-free input). The algorithm is based on finding the maximum weighted matching of an input graph and outputs a product of at most 2-qubit states, which is simpler than the fully entangled output states of the previous best algorithms. --v2 update: Ojas Parekh added as an author, triangle free condition removed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. Beyond Product State Approximations for a Quantum Analogue of Max Cut. In Steven T. Flammia, editor, 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020), volume 158 of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2020/12066, doi:10.4230/LIPIcs.TQC.2020.7.
  2. Grothendieck inequalities for semidefinite programs with rank constraint. Theory of Computing, 10(4):77–105, 2014. URL: https://theoryofcomputing.org/articles/v010a004, doi:10.4086/toc.2014.v010a004.
  3. Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics, page 125, 1965. URL: https://api.semanticscholar.org/CorpusID:15379135.
  4. Quantum hamiltonian complexity. Foundations and Trends® in Theoretical Computer Science, 10(3):159–282, 2015. URL: http://dx.doi.org/10.1561/0400000066, doi:10.1561/0400000066.
  5. Almost Optimal Classical Approximation Algorithms for a Quantum Generalization of Max-Cut. In Dimitris Achlioptas and László A. Végh, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019), volume 145 of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–31:17, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.31, doi:10.4230/LIPIcs.APPROX-RANDOM.2019.31.
  6. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, November 1995. URL: http://doi.acm.org/10.1145/227683.227684, doi:10.1145/227683.227684.
  7. Unique games hardness of quantum max-cut, and a vector-valued borell’s inequality, 2021. URL: https://arxiv.org/abs/2111.01254, doi:10.48550/ARXIV.2111.01254.
  8. Robbie King. An improved approximation algorithm for quantum max-cut on triangle-free graphs. Quantum, 7:1180, 11 2023. doi:10.22331/q-2023-11-09-1180.
  9. Jean B. Lasserre. An explicit equivalent positive semidefinite program for nonlinear 0-1 programs. SIAM J. on Optimization, 12(3):756–769, mar 2002. doi:10.1137/S1052623400380079.
  10. Eunou Lee. Optimizing quantum circuit parameters via SDP. In Sang Won Bae and Heejin Park, editors, 33rd International Symposium on Algorithms and Computation, ISAAC 2022, December 19-21, 2022, Seoul, Korea, volume 248 of LIPIcs, pages 48:1–48:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2022.48, doi:10.4230/LIPICS.ISAAC.2022.48.
  11. Convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New Journal of Physics, 10, 07 2008. doi:10.1088/1367-2630/10/7/073013.
  12. Application of the Level-2 Quantum Lasserre Hierarchy in Quantum Approximation Algorithms. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), volume 198 of Leibniz International Proceedings in Informatics (LIPIcs), pages 102:1–102:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2021/14171, doi:10.4230/LIPIcs.ICALP.2021.102.
  13. An optimal product-state approximation for 2-local quantum hamiltonians with positive terms. CoRR, abs/2206.08342, 2022. arXiv:2206.08342, doi:10.48550/arXiv.2206.08342.
  14. An su(2)-symmetric semidefinite programming hierarchy for quantum max cut, 2023. arXiv:2307.15688.
  15. Relaxations and exact solutions to quantum max cut via the algebraic structure of swap operators, 2023. arXiv:2307.15661.
  16. W. Wessel. Lovász, l.; plummer, m. d., matching theory. budapest, akadémiai kiadó 1986. xxxiii, 544 s., ft 680,—. isbn 9630541688. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 68(3):146–146, 1988. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19880680310, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/zamm.19880680310, doi:10.1002/zamm.19880680310.

Summary

We haven't generated a summary for this paper yet.