Involution Fused ConvNet for Classifying Eye-Tracking Patterns of Children with Autism Spectrum Disorder (2401.03575v1)
Abstract: Autism Spectrum Disorder (ASD) is a complicated neurological condition which is challenging to diagnose. Numerous studies demonstrate that children diagnosed with autism struggle with maintaining attention spans and have less focused vision. The eye-tracking technology has drawn special attention in the context of ASD since anomalies in gaze have long been acknowledged as a defining feature of autism in general. Deep Learning (DL) approaches coupled with eye-tracking sensors are exploiting additional capabilities to advance the diagnostic and its applications. By learning intricate nonlinear input-output relations, DL can accurately recognize the various gaze and eye-tracking patterns and adjust to the data. Convolutions alone are insufficient to capture the important spatial information in gaze patterns or eye tracking. The dynamic kernel-based process known as involutions can improve the efficiency of classifying gaze patterns or eye tracking data. In this paper, we utilise two different image-processing operations to see how these processes learn eye-tracking patterns. Since these patterns are primarily based on spatial information, we use involution with convolution making it a hybrid, which adds location-specific capability to a deep learning model. Our proposed model is implemented in a simple yet effective approach, which makes it easier for applying in real life. We investigate the reasons why our approach works well for classifying eye-tracking patterns. For comparative analysis, we experiment with two separate datasets as well as a combined version of both. The results show that IC with three involution layers outperforms the previous approaches.
- arXiv:https://acamh.onlinelibrary.wiley.com/doi/pdf/10.1111/jcpp.13587, doi:https://doi.org/10.1111/jcpp.13587. URL https://acamh.onlinelibrary.wiley.com/doi/abs/10.1111/jcpp.13587
- doi:10.1007/978-1-4471-6392-3_3. URL https://doi.org/10.1007/978-1-4471-6392-3_3
- doi:https://doi.org/10.1016/j.engappai.2023.107185. URL https://www.sciencedirect.com/science/article/pii/S0952197623013696
- doi:10.1007/s00521-017-2965-0. URL https://doi.org/10.1007/s00521-017-2965-0
- doi:10.1145/3381831. URL https://doi.org/10.1145/3381831
- doi:10.1145/3578938. URL https://doi.org/10.1145/3578938
- doi:10.1109/ICMEW.2019.00124.
- doi:10.1145/3613307.3613308. URL https://doi.org/10.1145/3613307.3613308
- doi:10.1109/JSEN.2023.3323047.
- doi:10.1109/SoutheastCon51012.2023.10115109.
- doi:10.48550/ARXIV.2103.06255. URL https://arxiv.org/abs/2103.06255
- doi:10.1109/ACCESS.2021.3139464.
- doi:10.1109/CCET52649.2021.9544225.
- doi:https://doi.org/10.1016/j.compfluid.2020.104727. URL https://www.sciencedirect.com/science/article/pii/S0045793020302978
- M. Elbattah, Visualization of eye-tracking scanpaths in autism spectrum disorder: Image dataset (Jun. 2019). doi:10.6084/m9.figshare.7073087.v1.
- doi:10.1145/3304109.3325818. URL https://hal.science/hal-02417635
- doi:10.1109/ACCESS.2023.3325701.
- doi:10.3390/electronics11040530. URL https://www.mdpi.com/2079-9292/11/4/530
- doi:10.5220/0010975500003123. URL https://u-picardie.hal.science/hal-03659990
- doi:10.1109/CVPR46437.2021.01214. URL https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.01214
- doi:10.1109/EMBC.2019.8856904.
- doi:10.1109/ICREST51555.2021.9331152.
- doi:10.1109/CSCWD57460.2023.10152815.
- doi:10.1109/JPROC.2019.2921977.
- doi:10.1109/ACCESS.2019.2901742.
- doi:https://doi.org/10.1016/B978-0-12-816718-2.00014-2. URL https://www.sciencedirect.com/science/article/pii/B9780128167182000142
- arXiv:https://academic.oup.com/bib/article-pdf/19/6/1236/27119191/bbx044.pdf, doi:10.1093/bib/bbx044. URL https://doi.org/10.1093/bib/bbx044
- doi:10.1007/s00521-022-06960-9. URL https://doi.org/10.1007/s00521-022-06960-9
- doi:10.1117/12.2518469. URL https://doi.org/10.1117/12.2518469
- doi:10.1109/EICT48899.2019.9068815.
- doi:10.1145/2638728.2641695. URL https://doi.org/10.1145/2638728.2641695
- doi:10.1145/3130971. URL https://doi.org/10.1145/3130971