Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding the Cavity Born-Oppenheimer Approximation (2401.03532v1)

Published 7 Jan 2024 in physics.chem-ph and quant-ph

Abstract: Experiments have demonstrated that vibrational strong coupling between molecular vibrations and light modes can significantly change molecular properties, such as ground-state reactivity. Theoretical studies towards the origin of this exciting observation can roughly be divided in two categories, with studies based on Hamiltonians that simply couple a molecule to a cavity mode via its ground-state dipole moment on the one hand, and on the other hand ab initio calculations that self-consistently include the effect of the cavity mode on the electronic ground state within the cavity Born-Oppenheimer (CBO) approximation; these approaches are not equivalent. The CBO approach is more rigorous, but unfortunately it requires the rewriting of electronic-structure code, and gives little physical insight. In this work, we exploit the relation between the two approaches and demonstrate on a real molecule (hydrogen fluoride) that for realistic coupling strengths, we can recover CBO energies and spectra to high accuracy using only out-of-cavity quantities from standard electronic-structure calculations. In doing so, we discover what the physical effects underlying the CBO results are. Our methodology can aid in incorporating more, possibly important features in models, play a pivotal role in demystifying CBO results and provide a practical and efficient alternative to full CBO calculations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. F. J. Garcia-Vidal, C. Ciuti, and T. W. Ebbesen, Manipulating matter by strong coupling to vacuum fields, Science 373, eabd0336 (2021).
  2. K. Nagarajan, A. Thomas, and T. W. Ebbesen, Chemistry under vibrational strong coupling, J. Am. Chem. Soc. 143, 16877 (2021).
  3. T. Fukushima, S. Yoshimitsu, and K. Murakoshi, Inherent promotion of ionic conductivity via collective vibrational strong coupling of water with the vacuum electromagnetic field, J. Am. Chem. Soc. 144, 12177 (2022).
  4. M. Ruggenthaler, D. Sidler, and A. Rubio, Understanding polaritonic chemistry from ab initio quantum electrodynamics, Chem. Rev. 123, 11191 (2023).
  5. X. Li, A. Mandal, and P. Huo, Cavity frequency-dependent theory for vibrational polariton chemistry, Nat. Commun. 12, 1315 (2021a).
  6. E. W. Fischer and P. Saalfrank, Ground state properties and infrared spectra of anharmonic vibrational polaritons of small molecules in cavities, J. Chem. Phys. 154, 104311 (2021).
  7. A. Mandal, X. Li, and P. Huo, Theory of vibrational polariton chemistry in the collective coupling regime, J. Chem. Phys. 156 (2022).
  8. E. W. Fischer, J. Anders, and P. Saalfrank, Cavity-altered thermal isomerization rates and dynamical resonant localization in vibro-polaritonic chemistry, J. Chem. Phys. 156, 154305 (2022).
  9. L. P. Lindoy, A. Mandal, and D. R. Reichman, Resonant cavity modification of ground-state chemical kinetics, J. Phys. Chem. Lett. 13, 6580 (2022).
  10. D. S. Wang, J. Flick, and S. F. Yelin, Chemical reactivity under collective vibrational strong coupling, J. Chem. Phys. 157 (2022b).
  11. M. Du, Y. R. Poh, and J. Yuen-Zhou, Vibropolaritonic reaction rates in the collective strong coupling regime: Pollak–Grabert–Hänggi theory, J. Phys. Chem. C 127, 5230 (2023).
  12. L. P. Lindoy, A. Mandal, and D. R. Reichman, Quantum dynamical effects of vibrational strong coupling in chemical reactivity, Nat. Commun. 14, 2733 (2023).
  13. T. E. Li, A. Nitzan, and J. E. Subotnik, Collective vibrational strong coupling effects on molecular vibrational relaxation and energy transfer: Numerical insights via cavity molecular dynamics simulations, Angew. Chem. Int. Edit. 60, 15533 (2021b).
  14. J. Sun and O. Vendrell, Suppression and enhancement of thermal chemical rates in a cavity, J. Phys. Chem. Lett. 13, 4441 (2022).
  15. J. Sun and O. Vendrell, Modification of thermal chemical rates in a cavity via resonant effects in the collective regime, J. Phys. Chem. Lett. 14, 8397 (2023).
  16. Q. Yu and J. M. Bowman, Manipulating hydrogen bond dissociation rates and mechanisms in water dimer through vibrational strong coupling, Nat. Commun. 14, 3527 (2023).
  17. J. Bonini and J. Flick, Ab initio linear-response approach to vibro-polaritons in the cavity born–oppenheimer approximation, J. Chem. Theory Comput. 18, 2764 (2022).
  18. T. Schnappinger and M. Kowalewski, Ab-initio vibro-polaritonic spectra in strongly coupled cavity-molecule systems, arXiv preprint arXiv:2310.01871  (2023).
  19. E. W. Fischer and P. Saalfrank, Beyond cavity born–oppenheimer: On nonadiabatic coupling and effective ground state hamiltonians in vibro-polaritonic chemistry, J. Chem. Theory Comput. 19, 7215 (2023).
  20. J. L. McHale, Molecular spectroscopy (CRC Press, 2017).
  21. F. Jensen, Introduction to computational chemistry (John Wiley & Sons, 2017).
  22. T. E. Li, A. Nitzan, and J. E. Subotnik, On the origin of ground-state vacuum-field catalysis: Equilibrium consideration, J. Chem. Phys. 152 (2020).
  23. E. Hecht, Optics: Pearson New International Edition (2013).
Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com