Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The fluctuation-dissipation relation holds for a macroscopic tracer in an active bath (2401.03509v2)

Published 7 Jan 2024 in cond-mat.stat-mech

Abstract: The fluctuation-dissipation relation (FDR) links thermal fluctuations and dissipation at thermal equilibrium through temperature. Extending it beyond equilibrium conditions in pursuit of broadening thermodynamics is often feasible, albeit with system-dependent specific conditions. We demonstrate experimentally that a generalized FDR holds for a harmonically trapped tracer colliding with self-propelled walkers. The generalized FDR remains valid across a large spectrum of active fluctuation frequencies, extending from underdamped to critically damped dynamics, which we attribute to a single primary channel for energy input and dissipation in our system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. A. Einstein, On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat, Ann. Phys. (Leipzig) 17, 208 (1905).
  2. R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29, 255 (1966).
  3. R. Kubo, Brownian motion and nonequilibrium statistical mechanics, Science 233, 330 (1986).
  4. P. Martin, A. Hudspeth, and F. Jülicher, Comparison of a hair bundle’s spontaneous oscillations with its response to mechanical stimulation reveals the underlying active process, Proc. Natl. Acad. Sci. 98, 14380 (2001).
  5. J. Prost, J.-F. Joanny, and J. M. Parrondo, Generalized fluctuation-dissipation theorem for steady-state systems, Phys. Rev. Lett. 103, 090601 (2009).
  6. B. Dybiec, J. M. Parrondo, and E. Gudowska-Nowak, Fluctuation-dissipation relations under Lévy noises, Europhys. Lett. 98, 50006 (2012).
  7. B. Lindner, Fluctuation-dissipation relations for spiking neurons, Phys. Rev. Lett. 129, 198101 (2022).
  8. V. Lucarini and M. Colangeli, Beyond the linear fluctuation-dissipation theorem: the role of causality, J. Stat. Mech. 2012, P05013 (2012).
  9. D. Villamaina, A. Puglisi, and A. Vulpiani, The fluctuation-dissipation relation in sub-diffusive systems: the case of granular single-file diffusion, J. Stat. Mech. 2008, L10001 (2008).
  10. G. Szamel, Self-propelled particle in an external potential: Existence of an effective temperature, Phys. Rev. E 90, 012111 (2014).
  11. E. Flenner and G. Szamel, Active matter: Quantifying the departure from equilibrium, Phys. Rev. E 102, 022607 (2020).
  12. A. Solon and J. M. Horowitz, On the Einstein relation between mobility and diffusion coefficient in an active bath, J. Phys. A 55, 184002 (2022).
  13. G. E. Uhlenbeck and L. S. Ornstein, On the theory of the Brownian motion, Phys. Rev. 36, 823 (1930).
  14. V. Démery and É. Fodor, Driven probe under harmonic confinement in a colloidal bath, J. Stat. Mech. 2019, 033202 (2019).
  15. J. Shea, G. Jung, and F. Schmid, Passive probe particle in an active bath: can we tell it is out of equilibrium?, Soft Matter 18, 6965 (2022).
  16. X.-L. Wu and A. Libchaber, Particle diffusion in a quasi-two-dimensional bacterial bath, Phys. Rev. Lett. 84, 3017 (2000).
  17. L. Angelani, R. Di Leonardo, and G. Ruocco, Self-starting micromotors in a bacterial bath, Phys. Rev. Lett. 102, 048104 (2009).
  18. T. Pöschel and S. Luding, Granular gases (Springer Science & Business Media, 2001).
  19. J. Van Zon and F. MacKintosh, Velocity distributions in dissipative granular gases, Phys. Rev. Lett. 93, 038001 (2004).
  20. A. Puglisi, A. Baldassarri, and V. Loreto, Fluctuation-dissipation relations in driven granular gases, Phys. Rev. E 66, 061305 (2002).
  21. Y. Shokef and D. Levine, Exactly solvable model for driven dissipative systems, Phys. Rev. Lett. 93, 240601 (2004).
  22. Y. Shokef and D. Levine, Energy distribution and effective temperatures in a driven dissipative model, Phys. Rev. E 74, 051111 (2006).
  23. G. Bunin, Y. Shokef, and D. Levine, Frequency-dependent fluctuation-dissipation relations in granular gases, Phys. Rev. E 77, 051301 (2008).
  24. O. Dauchot and V. Démery, Dynamics of a self-propelled particle in a harmonic trap, Phys. Rev. Lett. 122, 068002 (2019).
  25. The mean free time between collisions τcsubscript𝜏𝑐\tau_{c}italic_τ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT was estimated by tracking both the bbots and the tracer, averaging over the times in which there’s no physical contact between the bots and the tracer.
Citations (4)

Summary

We haven't generated a summary for this paper yet.