Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Theory and investigation of acoustic multiple-input multiple-output systems based on spherical arrays in a room (2401.03493v1)

Published 7 Jan 2024 in eess.AS and cs.SD

Abstract: Spatial attributes of room acoustics have been widely studied using microphone and loudspeaker arrays. However, systems that combine both arrays, referred to as multiple-input multiple-output (MIMO) systems, have only been studied to a limited degree in this context. These systems can potentially provide a powerful tool for room acoustics analysis due to the ability to simultaneously control both arrays. This paper offers a theoretical framework for the spatial analysis of enclosed sound fields using a MIMO system comprising spherical loudspeaker and microphone arrays. A system transfer function is formulated in matrix form for free-field conditions, and its properties are studied using tools from linear algebra. The system is shown to have unit-rank, regardless of the array types, and its singular vectors are related to the directions of arrival and radiation at the microphone and loudspeaker arrays, respectively. The formulation is then generalized to apply to rooms, using an image source method. In this case, the rank of the system is related to the number of significant reflections. The paper ends with simulation studies, which support the developed theory, and with an extensive reflection analysis of a room impulse response, using the platform of a MIMO system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. ISO, “3382. acoustics–measurement of the reverberation time of rooms with reference to other acoustical parameters,” International Standards Organization (1997).
  2. A. Marshall and M. Barron, “Spatial responsiveness in concert halls and the origins of spatial impression,” Applied acoustics, vol. 62, no. 2, pp. 91–108 (2001).
  3. D. Griesinger, “General overview of spatial impression, envelopment, localization, and externalization,” in Audio Engineering Society Conference: 15th International Conference: Audio, Acoustics & Small Spaces, Audio Engineering Society, Copenhagen, Denmark, 1998.
  4. M. Morimoto, K. Iida, and K. Sakagami, “The role of reflections from behind the listener in spatial impression,” Applied Acoustics, vol. 62, no. 2, pp. 109–124 (2001).
  5. B. N. Gover, J. G. Ryan, and M. R. Stinson, “Microphone array measurement system for analysis of directional and spatial variations of sound fields,” The Journal of the Acoustical Society of America, vol. 112, no. 5, pp. 1980–1991 (2002).
  6. B. Rafaely, “Analysis and design of spherical microphone arrays,” IEEE Transactions on Speech and Audio Processing, vol. 13, no. 1, pp. 135–143 (2005).
  7. I. Balmages and B. Rafaely, “Room acoustics measurements by microphone arrays,” in 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, 2004. Proceedings. 2004, pp. 420–423, IEEE.
  8. S. Tervo, J. Patynen, and T. Lokki, “Acoustic reflection path tracing using a highly directional loudspeaker,” in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2009. WASPAA’09., pp. 245–248, IEEE, 2009.
  9. B. Rafaely, “Spherical loudspeaker array for local active control of sound,” The Journal of the Acoustical Society of America, vol. 125, no. 5, pp. 3006–3017 (2009).
  10. K. Sekiguchi, S. Kimura, and T. Hanyuu, “Analysis of sound field on spatial information using a four-channel microphone system based on regular tetrahedron peak point method,” Applied Acoustics, vol. 37, no. 4, pp. 305–323 (1992).
  11. Y. Yamasaki and T. Itow, “Measurement of spatial information in sound fields by a closely located four-point microphone method,” The Journal of the Acoustical Society of America, vol. 84, no. S1, pp. S132–S132 (2005).
  12. M. A. Gerzon, “Recording concert hall acoustics for posterity,” Journal of the Audio Engineering Society, vol. 23, no. 7, pp. 569–571 (1975).
  13. A. Farina and R. Ayalon, “Recording concert hall acoustics for posterity,” in Audio Engineering Society Conference: 24th International Conference: Multichannel Audio, The New Reality, Audio Engineering Society (2003).
  14. A. Farina, “Room impulse responses as temporal and spatial filters,” in The 9th Western Pacific Acoustics Conference, Seoul, Korea, 2006.
  15. H. Morgenstern and B. Rafaely, “Analysis of acoustic mimo systems in enclosed sound fields,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012 , pp. 209–212, IEEE.
  16. H. Morgenstern, F. Zotter, and B. Rafaely, “Joint spherical beam forming for directional analysis of reflections in rooms,” The Journal of the Acoustical Society of America, vol. 131, no. 4, pp. 3207–3207 (2012).
  17. H. Morgenstern and B. Rafaely, “Enhanced spatial analysis of room acoustics using acoustic multiple-input multiple-output (mimo) systems,” in Proceedings of Meetings on Acoustics, vol. 19, 015018, Acoustical Society of America (2013).
  18. H. Morgenstern and B. Rafaely, “Far-field criterion for spherical microphone arrays and directional sources,” in Joint Workshop on Hands-free Speech Communication and Microphone Arrays (HSCMA), 2014, IEEE.
  19. J. B. Allen and D. A. Berkley, “Image method for efficiently simulating small-room acoustics,” The Journal of the Acoustical Society of America, vol. 65, no. 4, pp. 943–950 (1979).
  20. J. R. Driscoll and D. M. Healy, “Computing fourier transforms and convolutions on the 2-sphere,” Advances in applied mathematics, vol. 15, no. 2, pp. 202–250 (1994).
  21. Academic Press (1999).
  22. G. B. Arfken, H. J. Weber, and D. Spector, “Mathematical methods for physicists,” American Journal of Physics, vol. 67, pp. 165–169 (1999).
  23. B. Rafaely, B. Weiss, and E. Bachmat, “Spatial aliasing in spherical microphone arrays,” IEEE Transactions on Signal Processing, vol. 55, no. 3, pp. 1003–1010 (2007).
  24. P. S. Meyer and J. D. Meyer, “Multi acoustic prediction program (mapptm) recent results,” presented in Reproduced Sound Conference Avon, UK, 2000. Proceedings of The Institute of Acoustics (UK), vol. 22, no. 6, pp. 9–16.
  25. F. Zotter, A. Sontacchi, and R. Höldrich, “Modeling a spherical loudspeaker system as multipole source,” Fortschritte der Akustik, vol. 33, no. 1, p. 221 (2007).
  26. Elsevier (2005).
  27. B. Rafaely, “Plane-wave decomposition of the sound field on a sphere by spherical convolution,” The Journal of the Acoustical Society of America, vol. 116, no. 4, pp. 2149–2157 (2004).
  28. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, “Quantum theory of angular momentum,” World Scientific, pp. 22–25 (1987).
  29. B. Rafaely and M. Kleider, “Spherical microphone array beam steering using wigner-d weighting,” Signal Processing Letters, IEEE, vol. 15, pp. 417–420 (2008).
  30. A. Wabnitz, N. Epain, C. Jin, and A. van Schaik, “Room acoustics simulation for multichannel microphone arrays,” in Proceedings of the International Symposium on Room Acoustics, Melbourne, Australia, 2010.
  31. R. Ajaj, L. Savioja, and C. Jacquemin, “Software platform for real-time room acoustic visualization,” in Proceedings of the 2008 ACM symposium on Virtual reality software and technology, pp. 247–248, ACM, 2008.
  32. D. Schröder, F. Wefers, S. Pelzer, D. Rausch, M. Vorländer, and T. Kuhlen, “Virtual reality system at rwth aachen university,” in Proceedings of the International Symposium on Room Acoustics (ISRA), Melbourne, Australia, 2010.
  33. U. P. Svensson, B. Støfringsdal, A. Solvang, and S. Saue, “The use of ambisonics in describing room impulse responses,” in Proceedings of the International Congress on Acoustics, Kyoto, Japan, pp. 8–11, 2004.
  34. O. Roy and M. Vetterli, “The effective rank: A measure of effective dimensionality,” entropy, vol. 4, p. 7 (2007).
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hai Morgenstern (8 papers)
  2. Boaz Rafaely (30 papers)
  3. Franz Zotter (6 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.