Perturbation Spectra of Warm Inflation in $f(Q, T)$ Gravity (2401.03446v4)
Abstract: We investigate the warm inflationary scenario within the context of the linear version of f (Q, T ) gravity, coupled with both the inflaton scalar field and the radiation field, under the conditions of the strong dissipation regime. First, we calculate the modified Friedmann equations and the modified slow-roll parameters. Subsequently, we apply the slow-roll approximations to derive the scalar power spectrum and the tensor power spectrum. Also, we develop formulations of the scalar and tensor perturbations for the f (Q, T ) gravity with the warm inflation scenario. Furthermore, we scrutinize two different forms of the dissipation coefficient, a constant and a function of the inflaton field, to determine the scalar spectral index, the tensor-to-scalar ratio and the temperature for the power-law potential case. By imposing some constraints on the free parameters of the model, we attain results in good agreement with both the Planck 2018 data and the joint Planck, BK15 and BAO data for the tensor-to-scalar ratio, and consistent results aligned with the Planck 2018 data for the scalar spectral index. In addition, the obtained results are within the range of observational data for the amplitude of the scalar power spectrum. Consequently, we are able to revive the power-law potential that was previously ruled out by observational data. Moreover, for both dissipation coefficients, the model leads to a scalar spectral index with the blue and red tilts in agreement with the WMAP three years data.
- A.A. Starobinsky, “A new type of isotropic cosmological models without singularity”, Phys. Lett. B 91 (1980) 99.
- A.H. Guth, “Inflationary universe: A possible solution to the horizon and flatness problems”, Phys. Rev. D 23 (1981) 347.
- A. Albrecht and P.J. Steinhardt, “Cosmology for grand unified theories with radiatively induced symmetry breaking”, Phys. Rev. Lett. 48 (1982) 1220.
- A.D. Linde, “A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems”, Phys. Lett. B 108 (1982) 389.
- A. Linde, “Particle Physics and Inflationary Cosmology”, (Harwood, Reading, 1990).
- J.D. Barrow, “Graduated inflationary universes”, Phys. Lett. B 235 (1990) 40.
- J.D. Barrow, A.R. Liddle and C. Pahud, “Intermediate inflation in light of the three-year WMAP observations”, Phys. Rev. D 74 (2006) 127305.
- J. Martin, C. Ringeval, R. Trotta and V. Vennin, “The best inflationary models after Planck”, JCAP 1403 (2014) 039.
- B.A. Bassett, S. Tsujikawa and D. Wands, “Inflation dynamics and reheating”, Rev. Mod. Phys. 78 (2006) 537.
- A. Berera and L.Z. Fang, “Thermally induced density perturbations in the inflation era”, Phys. Rev. Lett. 74 (1995) 1912.
- A. Berera, “Warm inflation”, Phys. Rev. Lett. 75 (1995) 3218.
- A. Berera , “Interpolating the stage of exponential expansion in the early universe: Possible alternative with no reheating”, Phys. Rev. D 55 (1997) 3346.
- A. Berera, “The warm inflation story”, Univ. 9 (2023) 272.
- A. Berera, M. Gleiser and R.O. Ramos, “A first principles warm inflation model that solves the cosmological horizon and flatness problems”, Phys. Rev. Lett. 83 (1999) 264.
- H.P. de Oliveira and R.O. Ramos, “Dynamical system analysis for inflation with dissipation”, Phys. Rev. D 57 (1998) 741.
- A. Berera, “Warm inflation in the adiabatic regime – a model, an existence proof for inflationary dynamics in quantum field theory”, Nucl. Phys. B 585 (2000) 666.
- L.M.H. Hall, I.G. Moss and A. Berera, “Scalar perturbation spectra from warm inflation”, Phys. Rev. D 69 (2004) 083525.
- M. Bastero-Gil, A. Berera and R.O. Ramos, “Dissipation coefficients from scalar and fermion quantum field interactions”, JCAP 1109 (2011) 033.
- M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, “General dissipation coefficient in low-temperature warm inflation”, JCAP 1301 (2013) 016.
- M. Bellini, “Power spectrum of the primordial scalar field fluctuations in the warm inflation scenario”, Phys. Rev. D 58 (1998) 103518.
- A.N. Taylor and A. Berera, “Perturbation spectra in the warm inflationary scenario”, Phys. Rev. D 62 (2000) 083517.
- R. Herrera, S. del Campo and C. Campuzano, “Tachyon warm inflationary universe models”, JCAP 0610 (2006) 009.
- V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, “Theory of cosmological perturbations”, Phys. Rep. 215 (1992) 203.
- H.P. de Oliveira and S.E. Jorás, “On perturbations in warm inflation”, Phys. Rev. D 64 (2001) 063513.
- R.H. Brandenberger, “Lectures on the theory of cosmological perturbations”, Lect. Notes Phys. 646 (2004) 127.
- N. Bartolo, P.-S. Corasaniti, A.R. Liddle and M. Malquarti, “Perturbations in cosmologies with a scalar field and a perfect fluid”, Phys. Rev. D 70 (2004) 043532.
- S. Weinberg, “Cosmology”, (Oxford University Press, Oxford, 2008).
- P. Bari and K. Bhattacharya, “Evolution of scalar and vector cosmological perturbations through a bounce in metric f(R) gravity in flat FLRW spacetime”, JCAP 1911 (2019) 019.
- A. Nájera and A. Fajardo, “Cosmological perturbation theory in f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, JCAP 2203 (2022) 020.
- A. Einstein, “Die grundlage der allgemeinen relativitätstheorie”, Ann. Phys. (Berlin) 49 (1916) 769.
- C.M. Will, “The confrontation between general relativity and experiment”, Living Rev. Rel. 9 (2006) 3.
- D. Huterer and M.S. Turner, “Prospects for probing the dark energy via supernova distance measurements”, Phys. Rev. D 60 (1999) 081301(R).
- U. Alam, V. Sahni and A.A. Starobinsky, “The case for dynamical dark energy revisited”, JCAP 0406 (2004) 008.
- U. Alam, V. Sahni and A.A. Starobinsky, “Exploring the properties of dark energy using type-Ia supernovae and other datasets”, JCAP 0702 (2007) 011.
- M. Ishak, “Testing general relativity in cosmology”, Living Rev. Rel. 22 (2019) 1.
- P.G. Ferreira, “Cosmological tests of gravity”, Ann. Rev. Astron. Astrophys. 57 (2019) 335.
- M. Farhoudi, “On higher order gravities, their analogy to GR, and dimensional dependent version of Duff’s trace anomaly relation”, Gen. Relativ. Gravit. 38 (2006) 1261.
- M. Farhoudi, “Lovelock tensor as generalized Einstein tensor”, Gen. Relativ. Gravit. 41 (2009) 117.
- T.P. Sotiriou and V. Faraoni, “f(R)𝑓𝑅f(R)italic_f ( italic_R ) Theories of gravity”, Rev. Mod. Phys. 82 (2010) 451.
- A. De Felice and S. Tsujikawa, “f(R)𝑓𝑅f(R)italic_f ( italic_R ) theories”, Living Rev. Rel. 13 (2010) 3.
- R. Zaregonbadi and M. Farhoudi, “Cosmic acceleration from matter-curvature coupling”, Gen. Relativ. Gravit. 48 (2016) 142.
- R. Zaregonbadi, M. Farhoudi and N. Riazi, “Dark matter from f(R,T)𝑓𝑅𝑇f(R,T)italic_f ( italic_R , italic_T ) gravity”, Phys. Rev. D 94 (2016) 084052.
- Z. Haghani, M. Shiravand and S. Shahidi, “Energy conditions in mimetic-f(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity”, Int. J. Mod. Phys. D 27 (2018) 1850049.
- R. Zaregonbadi, N. Saba and M. Farhoudi, “Cosmological solutions of chameleon scalar field model”, Eur. Phys. J. C 83 (2023) 975.
- A.A. Starobinsky, “A new type of isotropic cosmological models without singularity”, Phys. Lett. B 102 (1980) 91.
- A. Vilenkin, “Classical and quantum cosmology of the Starobinsky inflationary model”, Phys. Rev. D 32 (1985) 2511.
- M.B. Mijić, M.S. Morris and W.-M. Suen, “The R2superscript𝑅2R^{2}italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT cosmology: Inflation without a phase transition”, Phys. Rev. D 34 (1986) 2934.
- Y. Fujii and K.-I. Maeda, “The Scalar-Tensor Theory of Gravitation”, (Cambridge University Press, Cambridge, 2003).
- L. Amendola, R. Gannouji, D. Polarski and S. Tsujikawa, “Conditions for the cosmological viability of f(R)𝑓𝑅f(R)italic_f ( italic_R ) dark energy models”, Phys. Rev. D 75 (2007) 083504.
- S. Nojiri and S.D. Odintsov, “Unified cosmic history in modified gravity: From f(R)𝑓𝑅f(R)italic_f ( italic_R ) theory to Lorentz non-invariant models”, Phys. Rep. 505 (2011) 59.
- H. Shabani and M. Farhoudi, “Cosmological and solar system consequences of f(R,T)𝑓𝑅𝑇f(R,T)italic_f ( italic_R , italic_T ) gravity models”, Phys. Rev. D 90 (2014) 044031.
- N. Saba and M. Farhoudi, “Chameleon field dynamics during inflation”, Int. J. Mod. Phys. D 27 (2018) 1850041.
- S.M.M. Rasouli, N. Saba, M. Farhoudi, J. Marto and P.V. Moniz, “Inflationary universe in deformed phase space scenario”, Ann. Phys. 393 (2018) 288.
- S.D. Odintsov, V.K. Oikonomou, I. Giannakoudi, F.P. Fronimos and E.C. Lymperiadou, “Recent advances on inflation”, Symmetry 15 (2023) 1701.
- H. Weyl, “Gravitation und Elektrizität”, Preuss. Akad. Wiss. Berlin, Sitz. (1918) 465.
- J.T. Wheeler, “Weyl geometry”, Gen. Relativ. Gravit. 50 (2018) 80.
- H. Weyl, “Raum-Zeit-Materie”, (Springer-Verlag, Berlin, 1st ed. 1918, 4th ed. 1921). Its English version (of the 4th ed.) is: “Space-Time-Matter”, translated by: H.L. Brose (Dover Publications, New York, 1st ed. 1922, reprinted 1950).
- P.A.M. Dirac, “Long range forces and broken symmetries”, Proc. R. Soc. London A 333 (1973) 403.
- J.W. Maluf, “The teleparallel equivalent of general relativity”, Ann. Phys. 525 (2013) 339.
- J.M. Nester and H.J. Yo, “Symmetric teleparallel general relativity”, Chin. J. Phys. 37 (1999) 113.
- J.B. Jiménez, L. Heisenberg and T. Koivisto, “Coincident general relativity”, Phys. Rev. D 98 (2018) 044048.
- J. Lu, X. Zhao and G. Chee, “Cosmology in symmetric teleparallel gravity and its dynamical system”, Eur. Phys. J. C 79 (2019) 530.
- J.B. Jiménez, L. Heisenberg, T.S. Koivisto and S. Pekar, “Cosmology in f(Q)𝑓𝑄f(Q)italic_f ( italic_Q ) geometry”, Phys. Rev. D 101 (2020) 103507.
- N. Dimakis, A. Paliathanasis, M. Roumeliotis and T. Christodoulakis, “FLRW solutions in f(Q)𝑓𝑄f(Q)italic_f ( italic_Q ) theory: The effect of using different connections”, Phys. Rev. D 106 (2022) 043509.
- Y. Xu, G. Li, T. Harko and S.D. Liang, “f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, Eur. Phys. J. C 79 (2019) 708.
- S. Arora, S.K.J. Pacif, S. Bhattacharjee and P.K. Sahoo, “f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity models with observational constraints”, Phys. Dark Univ. 30 (2020) 100664.
- Y. Xu, T. Harko, S. Shahidi and S.D. Liang, “Weyl type f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity, and its cosmological implications”, Eur. Phys. J. C 80 (2020) 449.
- S. Arora and P.K. Sahoo, “Energy conditions in f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, Phys. Scripta 95 (2020) 095003.
- S. Arora, A. Parida and P.K. Sahoo, “Constraining effective equation of state in f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, Eur. Phys. J. C 81 (2021) 555.
- G. Gadbail, S. Arora and P.K. Sahoo, “Viscous cosmology in the Weyl-type f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, Eur. Phys. J. C 81 (2021) 1088.
- G. Gadbail, S. Arora and P.K. Sahoo, “Power-law cosmology in Weyl-type f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, Eur. Phys. J. Plus 136 (2021) 1040.
- S. Arora, J.R.L. Santos and P.K. Sahoo, “Constraining f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity from energy conditions”, Phys. Dark Univ. 31 (2021) 100790.
- N. Godani and G.C. Samanta, “FRW cosmology in f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, Int. J. Geom. Meth. Mod. Phys. 18 (2021) 2150134.
- A. Pradhan and A. Dixit “Transit cosmological models with observational constraints in f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, Int. J. Geom. Meth. Mod. Phys. 18 (2021) 2150159.
- A.S. Agrawal, L. Pati, S.K. Tripathy and B. Mishra, “Matter bounce scenario and the dynamical aspects in f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, Phys. Dark Univ. 33 (2021) 100863.
- L. Pati, B. Mishra and S.K. Tripathy, “Model parameters in the context of late time cosmic acceleration in f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, Phys. Scripta 96 (2021) 105003.
- S. Arora, S.K.J. Pacif, A. Parida and P.K. Sahoo, “Bulk viscous matter and the cosmic acceleration of the universe in f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, J. High Energy Astrophys. 33 (2022) 1.
- L. Pati, S.A. Kadam, S.K. Tripathy and B. Mishra, “Rip cosmological models in extended symmetric teleparallel gravity”, Phys. Dark Univ. 35 (2022) 100925.
- M. Shiravand, S. Fakhry and M. Farhoudi, “Cosmological inflation in f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, Phys. Dark Univ. 37 (2022) 101106.
- K. El Bourakadi, M. Koussour, G. Otalora, M. Bennai and T. Ouali, “Constant-roll and primordial black holes in f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, Phys. Dark Univ. 41 (2023) 101246.
- R. Bhagat, S.A. Narawade and B. Mishra, “Weyl type f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity observational constrained cosmological models”, Phys. Dark Univ. 41 (2023) 101250.
- M. Tayde, Z. Hassan and P.K. Sahoo, “Existence of wormhole solutions in f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity under non-commutative geometries”, Phys. Dark Univ. 42 (2023) 101288.
- L. Pati, S.A. Narawade, S.K. Tripathy and B. Mishra, “Evolutionary behavior of cosmological parameters with dynamical system analysis in f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, Eur. Phys. J. C 83 (2023) 5.
- S. Mandal, A. Singh and R. Chubey, “Cosmic evolution of holographic dark energy in f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, Int. J. Geom. Meth. Mod. Phys. 20 (2023) 2350084.
- S.A. Narawade, M. Koussour and B. Mishra, “Constrained f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity accelerating cosmological model and its dynamical system analysis”, Nucl. Phys. B 992 (2023) 116233.
- S. Das and S. Mandal, “Aspects of cosmology in symmetric teleparallel f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity”, arXiv: 2306.14912.
- K. Nozari, M. Shoukrani and B. Fazlpour, “Non-minimal warm inflation and perturbations on the warped DGP brane with modified induced gravity”, Gen. Relativ. Gravit. 43 (2011) 207.
- M.R. Setare and V. Kamali, “Tachyon warm- intermediate inflationary universe model in high dissipative regime”, JCAP 1208 (2012) 034.
- M. Jamil, D. Momeni and R. Myrzakulov, “Warm intermediate inflation in F(T)𝐹𝑇F(T)italic_F ( italic_T ) gravity”, Int. J. Theor. Phys. 54 (2015) 1098.
- M. Sharif and A. Ikram, “Warm inflation in f(𝒢)𝑓𝒢f(\mathcal{G})italic_f ( caligraphic_G ) theory of gravity”, J. Exp. Theor. Phys. 123 (2016) 40.
- M. Sharif and I. Nawazish, “Warm intermediate inflation in f(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity”, Astrophys. Space Sci. 362 (2017) 30.
- W. Amaek, A. Payaka and P. Channuie, “Warm inflation in general scalar-tensor theory of gravity”, Phys. Rev. D 105 (2022) 083501.
- I. Shahid, R. Saleem and H.R. Kausar, “Warm inflation in hybrid metric-Palatini gravity under standard and irreversible thermodynamical approach”, Eur. Phys. J. C 83 (2023) 85.
- S. Yeasmin, B. Deb and A. Deshamukhya, “Warm inflation in f(R,T)𝑓𝑅𝑇f(R,T)italic_f ( italic_R , italic_T ) gravity”, Chin. J. Phys. 85 (2023) 359.
- S.B. Fisher and E.D. Carlson, “Reexamining f(R,T)𝑓𝑅𝑇f(R,T)italic_f ( italic_R , italic_T ) gravity”, Phys. Rev. D 100 (2019) 064059.
- T. Harko and P.H.R.S. Moraes, “Comment on “Reexamining f(R,T)𝑓𝑅𝑇f(R,T)italic_f ( italic_R , italic_T ) gravity”, Phys. Rev. D 100, 064059 (2019)”, Phys. Rev. D 101 (2020) 108501.
- S.B. Fisher and E.D. Carlson, “Response to comment on “Reexamining f(R,T)𝑓𝑅𝑇f(R,T)italic_f ( italic_R , italic_T ) gravity”, Phys. Rev. D 101 (2020) 108502.
- M. Bastero-Gil and A. Berera, “Warm inflation model building”, Int. J. Mod. Phys. A 24 (2009) 2207.
- M. Bastero-Gil, S. Bhattacharya, K. Dutta and M.R. Gangopadhyay, “Constraing warm inflation with CMB data”, JCAP 1802 (2018) 054.
- Y. Zhang, “Warm inflation with a general form of the dissipation coefficient”, JCAP 0903 (2009) 023.
- M. Correa, M.R. Gangopadhyay, N. Jaman and G.J. Mathews, “Primordial black-hole dark matter via warm natural inflation”, Phys. Lett. B 835 (2022) 137510.
- A.R. Liddle, P. Parsons and J.D. Barrow, “Formalizing the slow roll approximation in inflation”, Phys. Rev. D 50 (1994) 7222.
- A. Berera, I.G. Moss and R.O. Ramos, “Warm inflation and its microphysical basis”, Rept. Prog. Phys. 72 (2009) 026901.
- L. Visinelli, “Natural warm inflation”, JCAP 1109 (2011) 013.
- M. R. Setare and V. Kamali, “Warm vector inflation”, Phys. Lett. B 726 (2013) 56.
- R. Myrzakulov, L. Sebastiani and S. Zerbini, “Reconstruction of inflation models”, Eur. Phys. J. C 75 (2015) 5.
- A.R. Liddle, “An introduction to cosmological inflation”, arXiv: astro-ph/9901124.
- D. Baumann, “TASI lectures on inflation”, arXiv: 0907.5424.
- V. Mukhanov, “Physicsl Foundations of Cosmology”, (Cambridge University Press, Cambridge, 2005).
- I. G. Moss and C. Xiong, “Non-gaussianity in fluctuations from warm inflation”, JCAP 0704 (2007) 007.
- J. Martin, C. Ringeval and V. Vennin, “Encyclopædia inflationaris”, Phys. Dark Univ. 5-6 (2014) 75.
- K. Bhattacharya, S. Mohanty and R. Rangarajan, “Temperature of the inflaton and duration of inflation from WMAP data”, Phys. Rev. Lett. 96 (2006) 121302.
- K. Bhattacharya, S. Mohanty and A. Nautiyal, “Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves”, Phys. Rev. Lett. 97 (2006) 251301.
- A.D. Linde, “Chaotic inflation”, Phys. Lett. B 129 (1983) 177.
- S.A. Pavluchenko, “Some constraints on inflation models with power-law potentials”, Phys. Rev. D 69 (2004) 021301(R).
- WMAP collaboration, “Wilkinson microwave anisotropy probe (WMAP) three year results: Implications for cosmology”, Astrophys. J. Suppl. 170 (2007) 377.