Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep FBSDE Neural Networks for Solving Incompressible Navier-Stokes Equation and Cahn-Hilliard Equation (2401.03427v2)

Published 7 Jan 2024 in math.NA, cs.NA, and physics.flu-dyn

Abstract: Efficient algorithms for solving high-dimensional partial differential equations (PDEs) has been an exceedingly difficult task for a long time, due to the curse of dimensionality. We extend the forward-backward stochastic neural networks (FBSNNs) which depends on forward-backward stochastic differential equation (FBSDE) to solve incompressible Navier-Stokes equation. For Cahn-Hilliard equation, we derive a modified Cahn-Hilliard equation from a widely used stabilized scheme for original Cahn-Hilliard equation. This equation can be written as a continuous parabolic system, where FBSDE can be applied and the unknown solution is approximated by neural network. Also our method is successfully developed to Cahn-Hilliard-Navier-Stokes (CHNS) equation. The accuracy and stability of our methods are shown in many numerical experiments, specially in high dimension.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. SIAM Journal on Scientific Computing 43(5), A3135–A3154 (2021)
  2. arXiv preprint arXiv:1806.00421 (2018)
  3. arXiv preprint arXiv:2205.03672 (2022)
  4. Journal of scientific computing 79(3), 1667–1712 (2019)
  5. Acta Numerica 22, 133–288 (2013)
  6. Communications in Mathematics and Statistics 6(1), 1–12 (2018)
  7. arXiv preprint arXiv:2108.10504 (2021)
  8. Asia-Pacific Financial Markets 26(3), 391–408 (2019)
  9. Proceedings of the National Academy of Sciences 115(34), 8505–8510 (2018)
  10. Journal of Computational Physics 423, 109792 (2020)
  11. SIAM/ASA Journal on Uncertainty Quantification 2(1), 464–489 (2014)
  12. European Journal of Applied Mathematics 32(3), 421–435 (2021)
  13. SIAM Journal on Scientific Computing 41(5), A3182–A3201 (2019)
  14. SIAM Review 63(1), 208–228 (2021)
  15. Computer Methods in Applied Mechanics and Engineering 374, 113575 (2021)
  16. Journal of Computational Physics 452, 110930 (2022)
  17. Computer Methods in Applied Mechanics and Engineering 390, 114474 (2022)
  18. arXiv preprint arXiv:1710.09099 (2017)
  19. arXiv preprint arXiv:1804.09269 (2018)
  20. arXiv preprint arXiv:2203.03234 (2022)
  21. arXiv preprint arXiv:2112.03749 (2021)
  22. Partial Differential Equations and Applications 2(4), 1–48 (2021)
  23. Pardoux, É.: Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order. In: L. Decreusefond, B. Øksendal, J. Gjerde, A.S. Üstünel (eds.) Stochastic Analysis and Related Topics VI, pp. 79–127. Springer, Boston, MA (1998)
  24. In: B.L. Rozovskii, R.B. Sowers (eds.) Stochastic partial differential equations and their applications, pp. 200–217. Springer, Berlin, Heidelberg (1992)
  25. SN Partial Differential Equations and Applications 2(1), 1–24 (2021)
  26. Raissi, M.: Forward-backward stochastic neural networks: Deep learning of high-dimensional partial differential equations. arXiv preprint arXiv:1804.07010 (2018)
  27. Journal of Computational physics 378, 686–707 (2019)
  28. arXiv preprint arXiv:1808.04327 (2018)
  29. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020)
  30. Discrete & Continuous Dynamical Systems 28(4), 1669 (2010)
  31. SIAM Journal on Scientific Computing 32(6), 3228–3250 (2010)
  32. Journal of computational physics 375, 1339–1364 (2018)
  33. Journal of Computational Physics 454, 110956 (2022)
  34. arXiv preprint arXiv:1810.05094 (2018)
  35. arXiv preprint arXiv:2201.01318 (2022)
  36. Journal of Computational Physics 314, 244–263 (2016)
  37. Journal of Computational Physics 400, 108963 (2020)
  38. Warin, X.: Nesting Monte Carlo for high-dimensional non-linear PDEs. Monte Carlo Methods and Applications 24(4), 225–247 (2018)
  39. arXiv preprint arXiv:2007.04542 (2020)
  40. Journal of Computational Physics 411, 109409 (2020)
  41. Journal of Computational Physics 463, 111232 (2022)
  42. arXiv preprint arXiv:2103.08915 (2021)
  43. Journal of Computational Physics 394, 56–81 (2019)

Summary

We haven't generated a summary for this paper yet.