Papers
Topics
Authors
Recent
2000 character limit reached

Modelling and Predicting the Conditional Variance of Bitcoin Daily Returns: Comparsion of Markov Switching GARCH and SV Models

Published 7 Jan 2024 in q-fin.ST and q-fin.RM | (2401.03393v2)

Abstract: This paper introduces a unique and valuable research design aimed at analyzing Bitcoin price volatility. To achieve this, a range of models from the Markov Switching-GARCH and Stochastic Autoregressive Volatility (SARV) model classes are considered and their out-of-sample forecasting performance is thoroughly examined. The paper provides insights into the rationale behind the recommendation for a two-stage estimation approach, emphasizing the separate estimation of coefficients in the mean and variance equations. The results presented in this paper indicate that Stochastic Volatility models, particularly SARV models, outperform MS-GARCH models in forecasting Bitcoin price volatility. Moreover, the study suggests that in certain situations, persistent simple GARCH models may even outperform Markov-Switching GARCH models in predicting the variance of Bitcoin log returns. These findings offer valuable guidance for risk management experts, highlighting the potential advantages of SARV models in managing and forecasting Bitcoin price volatility.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 5 tweets with 2 likes about this paper.