Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT (2401.03302v3)

Published 6 Jan 2024 in eess.IV, cs.AI, cs.CV, cs.LG, and stat.ML

Abstract: In the field of medical sciences, reliable detection and classification of brain tumors from images remains a formidable challenge due to the rarity of tumors within the population of patients. Therefore, the ability to detect tumors in anomaly scenarios is paramount for ensuring timely interventions and improved patient outcomes. This study addresses the issue by leveraging deep learning (DL) techniques to detect and classify brain tumors in challenging situations. The curated data set from the National Brain Mapping Lab (NBML) comprises 81 patients, including 30 Tumor cases and 51 Normal cases. The detection and classification pipelines are separated into two consecutive tasks. The detection phase involved comprehensive data analysis and pre-processing to modify the number of image samples and the number of patients of each class to anomaly distribution (9 Normal per 1 Tumor) to comply with real world scenarios. Next, in addition to common evaluation metrics for the testing, we employed a novel performance evaluation method called Patient to Patient (PTP), focusing on the realistic evaluation of the model. In the detection phase, we fine-tuned a YOLOv8n detection model to detect the tumor region. Subsequent testing and evaluation yielded competitive performance both in Common Evaluation Metrics and PTP metrics. Furthermore, using the Data Efficient Image Transformer (DeiT) module, we distilled a Vision Transformer (ViT) model from a fine-tuned ResNet152 as a teacher in the classification phase. This approach demonstrates promising strides in reliable tumor detection and classification, offering potential advancements in tumor diagnosis for real-world medical imaging scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. D. N. Louis, A. Perry, G. Reifenberger, A. Von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 world health organization classification of tumors of the central nervous system: a summary,” Acta neuropathologica, vol. 131, pp. 803–820, 2016.
  2. G. S. Tandel, M. Biswas, O. G. Kakde, A. Tiwari, H. S. Suri, M. Turk, J. R. Laird, C. K. Asare, A. A. Ankrah, N. Khanna et al., “A review on a deep learning perspective in brain cancer classification,” Cancers, vol. 11, no. 1, p. 111, 2019.
  3. A. K. Anaraki, M. Ayati, and F. Kazemi, “Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms,” biocybernetics and biomedical engineering, vol. 39, no. 1, pp. 63–74, 2019.
  4. R. Augustine, A. Al Mamun, A. Hasan, S. A. Salam, R. Chandrasekaran, R. Ahmed, and A. S. Thakor, “Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis,” Advances in Colloid and Interface Science, vol. 294, p. 102457, 2021.
  5. K. Popuri, D. Cobzas, A. Murtha, and M. Jägersand, “3d variational brain tumor segmentation using dirichlet priors on a clustered feature set,” International journal of computer assisted radiology and surgery, vol. 7, pp. 493–506, 2012.
  6. “Brain Tumors and Brain Cancer,” 2023, [Online; accessed 31. Aug. 2023]. [Online]. Available: https://www.hopkinsmedicine.org/health/conditions-and-diseases/brain-tumor
  7. J. Kang, Z. Ullah, and J. Gwak, “Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers,” Sensors, vol. 21, no. 6, p. 2222, 2021.
  8. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  9. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.
  10. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  11. “Brain Tumor - Statistics,” 2023, [Online; accessed 31. Aug. 2023]. [Online]. Available: https://www.cancer.net/cancer-types/brain-tumor/statistics
  12. H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Training data-efficient image transformers & distillation through attention,” in International conference on machine learning.   PMLR, 2021, pp. 10 347–10 357.
  13. M. Devi, S. Maheswaran et al., “An efficient method for brain tumor detection using texture features and svm classifier in mr images,” Asian Pacific journal of cancer prevention: APJCP, vol. 19, no. 10, p. 2789, 2018.
  14. E. I. Zacharaki, S. Wang, S. Chawla, D. Soo Yoo, R. Wolf, E. R. Melhem, and C. Davatzikos, “Classification of brain tumor type and grade using mri texture and shape in a machine learning scheme,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 62, no. 6, pp. 1609–1618, 2009.
  15. S. Shrot, M. Salhov, N. Dvorski, E. Konen, A. Averbuch, and C. Hoffmann, “Application of mr morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme,” Neuroradiology, vol. 61, pp. 757–765, 2019.
  16. S. Deepak and P. Ameer, “Retrieval of brain mri with tumor using contrastive loss based similarity on googlenet encodings,” Computers in biology and medicine, vol. 125, p. 103993, 2020.
  17. Z. N. K. Swati, Q. Zhao, M. Kabir, F. Ali, Z. Ali, S. Ahmed, and J. Lu, “Brain tumor classification for mr images using transfer learning and fine-tuning,” Computerized Medical Imaging and Graphics, vol. 75, pp. 34–46, 2019.
  18. Y. Zhuge, H. Ning, P. Mathen, J. Y. Cheng, A. V. Krauze, K. Camphausen, and R. W. Miller, “Automated glioma grading on conventional mri images using deep convolutional neural networks,” Medical physics, vol. 47, no. 7, pp. 3044–3053, 2020.
  19. R. Pomponio, G. Erus, M. Habes, J. Doshi, D. Srinivasan, E. Mamourian, V. Bashyam, I. M. Nasrallah, T. D. Satterthwaite, Y. Fan et al., “Harmonization of large mri datasets for the analysis of brain imaging patterns throughout the lifespan,” NeuroImage, vol. 208, p. 116450, 2020.
  20. M. A. Naser and M. J. Deen, “Brain tumor segmentation and grading of lower-grade glioma using deep learning in mri images,” Computers in biology and medicine, vol. 121, p. 103758, 2020.
  21. Ö. Polat and C. Güngen, “Classification of brain tumors from mr images using deep transfer learning,” The Journal of Supercomputing, vol. 77, no. 7, pp. 7236–7252, 2021.
  22. H. A. Khan, W. Jue, M. Mushtaq, and M. U. Mushtaq, “Brain tumor classification in mri image using convolutional neural network,” Mathematical Biosciences and Engineering, 2021.
  23. M. M. Badža and M. Č. Barjaktarović, “Classification of brain tumors from mri images using a convolutional neural network,” Applied Sciences, vol. 10, no. 6, p. 1999, 2020.
  24. E. U. Haq, H. Jianjun, K. Li, H. U. Haq, and T. Zhang, “An mri-based deep learning approach for efficient classification of brain tumors,” Journal of Ambient Intelligence and Humanized Computing, pp. 1–22, 2021.
  25. A. Sekhar, S. Biswas, R. Hazra, A. K. Sunaniya, A. Mukherjee, and L. Yang, “Brain tumor classification using fine-tuned googlenet features and machine learning algorithms: Iomt enabled cad system,” IEEE journal of biomedical and health informatics, vol. 26, no. 3, pp. 983–991, 2021.
  26. N. S. Shaik and T. K. Cherukuri, “Multi-level attention network: application to brain tumor classification,” Signal, Image and Video Processing, vol. 16, no. 3, pp. 817–824, 2022.
  27. M. F. Alanazi, M. U. Ali, S. J. Hussain, A. Zafar, M. Mohatram, M. Irfan, R. AlRuwaili, M. Alruwaili, N. H. Ali, and A. M. Albarrak, “Brain tumor/mass classification framework using magnetic-resonance-imaging-based isolated and developed transfer deep-learning model,” Sensors, vol. 22, no. 1, p. 372, 2022.
  28. B. Ahmad, J. Sun, Q. You, V. Palade, and Z. Mao, “Brain tumor classification using a combination of variational autoencoders and generative adversarial networks,” Biomedicines, vol. 10, no. 2, p. 223, 2022.
  29. M. I. Sharif, M. A. Khan, M. Alhussein, K. Aurangzeb, and M. Raza, “A decision support system for multimodal brain tumor classification using deep learning,” Complex & Intelligent Systems, pp. 1–14, 2021.
  30. A. A. Asiri, A. Shaf, T. Ali, U. Shakeel, M. Irfan, K. M. Mehdar, H. T. Halawani, A. H. Alghamdi, A. F. A. Alshamrani, and S. M. Alqhtani, “Exploring the power of deep learning: Fine-tuned vision transformer for accurate and efficient brain tumor detection in mri scans,” Diagnostics, vol. 13, no. 12, p. 2094, 2023.
  31. S. Tummala, S. Kadry, S. A. C. Bukhari, and H. T. Rauf, “Classification of brain tumor from magnetic resonance imaging using vision transformers ensembling,” Current Oncology, vol. 29, no. 10, pp. 7498–7511, 2022.
  32. A. B. Abdusalomov, M. Mukhiddinov, and T. K. Whangbo, “Brain Tumor Detection Based on Deep Learning Approaches and Magnetic Resonance Imaging,” Cancers, vol. 15, no. 16, August 2023.
  33. “Cancer of the Brain and Other Nervous System - Cancer Stat Facts,” 2023, [Online; accessed 31. Aug. 2023]. [Online]. Available: https://seer.cancer.gov/statfacts/html/brain.html
  34. “Brief summary of YOLOv8 model structure ⋅⋅\cdot⋅ Issue #189 ⋅⋅\cdot⋅ ultralytics/ultralytics,” august 2023, [Online; accessed 13. Aug. 2023]. [Online]. Available: https://github.com/ultralytics/ultralytics/issues/189
  35. J. Solawetz, “What is YOLOv8? The Ultimate Guide.” Roboflow Blog, December 2023. [Online]. Available: https://blog.roboflow.com/whats-new-in-yolov8
  36. W. M. Elmessery, J. Gutiérrez, G. G. Abd El-Wahhab, I. A. Elkhaiat, I. S. El-Soaly, S. K. Alhag, L. A. Al-Shuraym, M. A. Akela, F. S. Moghanm, and M. F. Abdelshafie, “Yolo-based model for automatic detection of broiler pathological phenomena through visual and thermal images in intensive poultry houses,” Agriculture, vol. 13, no. 8, p. 1527, 2023.
  37. G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint arXiv:1503.02531, 2015.
  38. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  39. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  40. J. Cheng, “Brain tumor dataset,” figshare. Dataset, vol. 1512427, no. 5, 2017.
  41. “vit-pytorch,” 2023, [Online; accessed 31. Aug. 2023]. [Online]. Available: https://github.com/lucidrains/vit-pytorch
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com