Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ENSTRECT: A Stage-based Approach to 2.5D Structural Damage Detection (2401.03298v2)

Published 6 Jan 2024 in cs.CV

Abstract: To effectively assess structural damage, it is essential to localize the instances of damage in the physical world of a civil structure. ENSTRECT is a stage-based approach designed to accomplish 2.5D structural damage detection. The method requires an image collection, the relative orientation, and a point cloud. Using these inputs, surface damages are segmented at the image level and then mapped into the point cloud space, resulting in a segmented point cloud. To enable further quantitative analyses, the segmented point cloud is transformed into measurable damage instances: cracks are extracted by contracting the clustered point cloud into a corresponding medial axis. For areal damages, such as spalling and corrosion, a procedure is proposed to compute the bounding polygon based on PCA and alpha shapes. With a localization tolerance of 4cm, ENSTRECT can achieve IoUs of over 90% for cracks, 82% for corrosion, and 41% for spalling. Detection at the instance level yields an AP50 of about 45% (cracks, spalling) and 56% (corrosion).

Citations (2)

Summary

We haven't generated a summary for this paper yet.