Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-End Anti-Backdoor Learning on Images and Time Series (2401.03215v1)

Published 6 Jan 2024 in cs.LG and cs.CR

Abstract: Backdoor attacks present a substantial security concern for deep learning models, especially those utilized in applications critical to safety and security. These attacks manipulate model behavior by embedding a hidden trigger during the training phase, allowing unauthorized control over the model's output during inference time. Although numerous defenses exist for image classification models, there is a conspicuous absence of defenses tailored for time series data, as well as an end-to-end solution capable of training clean models on poisoned data. To address this gap, this paper builds upon Anti-Backdoor Learning (ABL) and introduces an innovative method, End-to-End Anti-Backdoor Learning (E2ABL), for robust training against backdoor attacks. Unlike the original ABL, which employs a two-stage training procedure, E2ABL accomplishes end-to-end training through an additional classification head linked to the shallow layers of a Deep Neural Network (DNN). This secondary head actively identifies potential backdoor triggers, allowing the model to dynamically cleanse these samples and their corresponding labels during training. Our experiments reveal that E2ABL significantly improves on existing defenses and is effective against a broad range of backdoor attacks in both image and time series domains.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in CVPR, 2016.
  2. A. Balasundaram and C. Chellappan, “Vision based motion tracking in real time videos,” in ICCIC, 2017.
  3. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in CVPR, 2016.
  4. O. Peia and K. Roszbach, “Finance and growth: time series evidence on causality,” Journal of Financial Stability, 2015.
  5. A. Essien and C. Giannetti, “A deep learning model for smart manufacturing using convolutional lstm neural network autoencoders,” IEEE Transactions on Industrial Informatics, 2020.
  6. R. B. Penfold and F. Zhang, “Use of interrupted time series analysis in evaluating health care quality improvements,” Academic pediatrics, 2013.
  7. T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabilities in the machine learning model supply chain,” arXiv preprint arXiv:1708.06733, 2017.
  8. Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural backdoor attack on deep neural networks,” in ECCV, 2020.
  9. A. Turner, D. Tsipras, and A. Madry, “Label-consistent backdoor attacks,” arXiv preprint arXiv:1912.02771, 2019.
  10. S. Cheng, Y. Liu, S. Ma, and X. Zhang, “Deep feature space trojan attack of neural networks by controlled detoxification,” in AAAI, 2021.
  11. D. Ding, M. Zhang, Y. Huang, X. Pan, F. Feng, E. Jiang, and M. Yang, “Towards backdoor attack on deep learning based time series classification,” in ICDE, 2022.
  12. Y. Jiang, X. Ma, S. M. Erfani, and J. Bailey, “Backdoor attacks on time series: A generative approach,” arXiv preprint arXiv:2211.07915, 2022.
  13. Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Anti-backdoor learning: Training clean models on poisoned data,” NeurIPS, 2021.
  14. X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks on deep learning systems using data poisoning,” arXiv preprint arXiv:1712.05526, 2017.
  15. E. Bagdasaryan and V. Shmatikov, “Blind backdoors in deep learning models,” in USENIX Security, 2021.
  16. S. Zhao, X. Ma, X. Zheng, J. Bailey, J. Chen, and Y.-G. Jiang, “Clean-label backdoor attacks on video recognition models,” in CVPR, 2020.
  17. A. Nguyen and A. Tran, “Input-aware dynamic backdoor attack,” NeurIPS, 2020.
  18. Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu, “Invisible backdoor attack with sample-specific triggers,” in CVPR, 2021.
  19. Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang, “Trojaning attack on neural networks,” in NDSS, 2018.
  20. A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks on neural networks,” NeurIPS, 2018.
  21. A. Turner, D. Tsipras, and A. Madry, “Clean-label backdoor attacks,” https://people.csail.mit.edu/madry/lab/, 2019.
  22. C. Zhu, W. R. Huang, H. Li, G. Taylor, C. Studer, and T. Goldstein, “Transferable clean-label poisoning attacks on deep neural nets,” in International Conference on Machine Learning, pp. 7614–7623, PMLR, 2019.
  23. A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden trigger backdoor attacks,” in AAAI, 2020.
  24. S. Wang, S. Nepal, C. Rudolph, M. Grobler, S. Chen, and T. Chen, “Backdoor attacks against transfer learning with pre-trained deep learning models,” IEEE Transactions on Services Computing, 2020.
  25. J. Dumford and W. Scheirer, “Backdooring convolutional neural networks via targeted weight perturbations,” in IJCB, 2020.
  26. S. Garg, A. Kumar, V. Goel, and Y. Liang, “Can adversarial weight perturbations inject neural backdoors,” in CIKM, 2020.
  27. P. Zhao, P.-Y. Chen, P. Das, K. N. Ramamurthy, and X. Lin, “Bridging mode connectivity in loss landscapes and adversarial robustness,” arXiv preprint arXiv:2005.00060, 2020.
  28. Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Neural attention distillation: Erasing backdoor triggers from deep neural networks,” ICLR, 2021.
  29. D. Wu and Y. Wang, “Adversarial neuron pruning purifies backdoored deep models,” NeurIPS, 2021.
  30. Y. Li, X. Lyu, X. Ma, N. Koren, L. Lyu, B. Li, and Y.-G. Jiang, “Reconstructive neuron pruning for backdoor defense,” ICML, 2023.
  31. K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against backdooring attacks on deep neural networks,” in RAID, 2018.
  32. Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent backdoor attacks on deep neural networks,” in CCS, 2019.
  33. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR, 2016.
  34. R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, and F. A. Wichmann, “Shortcut learning in deep neural networks,” Nature Machine Intelligence, vol. 2, no. 11, pp. 665–673, 2020.
  35. S. Li, S. Ma, M. Xue, and B. Z. H. Zhao, “Deep learning backdoors,” in Security and Artificial Intelligence, pp. 313–334, Springer, 2022.
  36. S. Yang, Y. Li, Y. Jiang, and S.-T. Xia, “Backdoor defense via suppressing model shortcuts,” arXiv preprint arXiv:2211.05631, 2022.
  37. A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,” 2009.
  38. J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The german traffic sign recognition benchmark: a multi-class classification competition,” in IJCNN, 2011.
  39. M. Barni, K. Kallas, and B. Tondi, “A new backdoor attack in cnns by training set corruption without label poisoning,” in ICIP, 2019.
  40. J. Lin, L. Xu, Y. Liu, and X. Zhang, “Composite backdoor attack for deep neural network by mixing existing benign features,” in SIGSAC Conference on Computer and Communications Security, 2020.
  41. Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and G. Batista, “The ucr time series classification archive,” July 2015. www.cs.ucr.edu/~eamonn/time_series_data/.
  42. Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch with deep neural networks: A strong baseline,” in IJCNN, 2017.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yujing Jiang (5 papers)
  2. Xingjun Ma (114 papers)
  3. Sarah Monazam Erfani (13 papers)
  4. Yige Li (24 papers)
  5. James Bailey (70 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets