Effect of temperature-dependent material properties on thermal regulation in microvascular composites (2401.03103v2)
Abstract: Fiber-reinforced composites (FRC) provide structural systems with unique features that appeal to various civilian and military sectors. Often, one needs to modulate the temperature field to achieve the intended functionalities (e.g., self-healing) in these lightweight structures. Vascular-based active cooling offers one efficient way of thermal regulation in such material systems. However, the thermophysical properties (e.g., thermal conductivity, specific heat capacity) of FRC and their base constituents depend on temperature, and such structures are often subject to a broad spectrum of temperatures. Notably, prior active cooling modeling studies did not account for such temperature dependence. Thus, the primary aim of this paper is to reveal the effect of temperature-dependent material properties -- obtained via material characterization -- on the qualitative and quantitative behaviors of active cooling. By applying mathematical analysis and conducting numerical simulations, we show this dependence does not affect qualitative attributes, such as minimum and maximum principles (in the same spirit as \textsc{Hopf}'s results for elliptic partial differential equations). However, the dependence slightly affects quantitative results, such as the mean surface temperature and thermal efficiency. The import of our study is that it provides a deeper understanding of thermal regulation systems under practical scenarios and can guide researchers and practitioners in perfecting associated designs.
- K. H. G. Ashbee. Fundamental Principles of Fiber Reinforced Composites. CRC Press, Boca Raton, 1993.
- A critical review of thermal issues in lithium-ion batteries. Journal of the Electrochemical Society, 158(3):R1, 2011. doi: 10.1149/1.3515880/meta.
- E. Benfeldt. In vivo microdialysis for the investigation of drug levels in the dermis and the effect of barrier perturbation on cutaneous drug penetration. Studies in hairless rats and human subjects. Acta dermato-venereologica. Supplementum, 206:1–59, 1999.
- H. Brézis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York, 2011.
- W. Buck and S. Rudtsch. Thermal properties. Springer Handbook of Metrology and Testing, pages 453–483, 2011. doi: 10.1007/978-3-642-16641-9˙8.
- Thermodynamics: An Engineering Approach. McGraw-Hill, New York, 2011.
- COMSOL Multiphysics. Comsol User’s Guide, Version 5.3. COMSOL AB, Stockholm, Sweden, 2018.
- A new approach for the estimation of temperature-dependent thermal properties by solving transient inverse heat conduction problems. International Journal of Thermal Sciences, 58:113–119, 2012. doi: 10.1016/j.ijthermalsci.2012.02.024.
- A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics. Journal of Materials Science, 47:4211–4235, 2012. doi: 10.1007/s10853-011-6140-1.
- A microvascular-based multifunctional and reconfigurable metamaterial. Advanced Materials Technologies, 6(11):2100433, 2021. doi: 10.1002/admt.202100433.
- A methodology for measuring heat transfer coefficient and self-similarity of thermal regulation in microvascular material systems. International Journal of Heat and Mass Transfer, 217:124614, 2023. doi: 10.1016/j.ijheatmasstransfer.2023.124614.
- Journey to the center of the solar system: How the Parker solar probe survives close encounters with the sun. IEEE Spectrum, 56(5):32–53, 2019. doi: 10.1109/MSPEC.2019.8701197.
- The engineering toolbox. Water – specific heat vs. temperature. URL https://www.engineeringtoolbox.com/specific-heat-capacity-water-d_660.html. Accessed on 10-13-2023.
- Additive manufacturing for thermal management applications: from experimental results to numerical modeling. International Journal of Thermofluids, 10:100091, 2021. doi: 10.1016/j.ijft.2021.100091.
- D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York, 2015.
- Y. K. Godovsky. Thermophysical Properties of Polymers. Springer-Verlag, Berlin, 2012.
- J. González-Alonso. Human thermoregulation and the cardiovascular system. Experimental Physiology, 97(3):340–346, 2012. doi: 10.1113/expphysiol.2011.058701.
- G. Grimvall. Thermophysical Properties of Materials. Elsevier, Amsterdam, 1999.
- Jackrabbit ears: Surface temperatures and vascular responses. Science, 194(4263):436–438, 1976. doi: 10.1126/science.982027.
- C. H. Huang and Y. Jan-Yuan. An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity. International Journal of Heat and Mass Transfer, 38(18):3433–3441, 1995. doi: 10.1016/0017-9310(95)00059-I.
- Stress Analysis of Fiber-Reinforced Composite Materials. DEStech Publications, Inc, Lancaster, Pennsylvania, 2009.
- CoolPINNs: A physics-informed neural network modeling of active cooling in vascular systems. Applied Mathematical Modelling, 122:265–287, 2023. doi: 10.1016/j.apm.2023.04.020.
- M. P. Kahl. Thermoregulation in the wood stork, with special reference to the role of the legs. Physiological Zoology, 36(2):141–151, 1963. doi: 10.1086/physzool.36.2.30155437.
- Improvement of spacecraft white thermal control coatings using the new synthesized Zn-MCM-41 pigment. Dyes and Pigments, 96(2):403–406, 2013. doi: 10.1016/j.dyepig.2012.08.019.
- C. Kittel and H. Kroemer. Thermal Physics. W. H. Freeman and Company, New York, second edition, 1998.
- R. Mahamud and C. Park. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. Journal of Power Sources, 196(13):5685–5696, 2011. doi: 10.1016/j.jpowsour.2011.02.076.
- K. B. Nakshatrala. Modeling thermal regulation in thin vascular systems: A mathematical analysis. Communications in Computational Physics, 33:1035–1068, 2023. doi: 10.4208/cicp.OA-2022-0240.
- K. B. Nakshatrala and K. Adhikari. Thermal regulation in thin vascular systems: A sensitivity analysis. Communication in Computational Physics, 35(2):427–466, 2024. doi: 10.4208/cicp.OA-2023-0166.
- Configuration-independent thermal invariants under flow reversal in thin vascular systems. PNAS Nexus, 2(8):pgad266, 2023. doi: 10.1093/pnasnexus/pgad266.
- Recent advances on 3D printing technique for thermal-related applications. Advanced Engineering Materials, 20(5):1700876, 2018. doi: 10.1002/adem.201700876.
- Li-ion battery materials: present and future. Materials Today, 18(5):252–264, 2015. doi: 10.1016/j.mattod.2014.10.040.
- Modeling of the electrical conductivity, thermal conductivity, and specific heat capacity of VO2subscriptVO2\mathrm{VO_{2}}roman_VO start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Physical Review B, 98(7):075144, 2018. doi: 10.1103/PhysRevB.98.075144.
- PCB-integrated heat exchanger for cooling electronics using microchannels fabricated with the direct-write method. IEEE Transactions on Components and Packaging Technologies, 31(4):869–874, 2008. doi: 10.1109/TCAPT.2008.2004773.
- C-V. Pao. Nonlinear Parabolic and Elliptic Equations. Springer Science & Business Media, New York, 2012.
- Miniature loop heat pipes for electronics cooling. Applied Thermal Engineering, 23(9):1125–1135, 2003. doi: 10.1016/S1359-4311(03)00046-2.
- Two-dimensional X-ray diffraction (2D-Xrd) and micro-computed tomography (micro-Ct) characterization of additively manufactured 316l stainless steel. Preprint available at SSRN 4529173, 2023. doi: 10.2139/ssrn.4529173.
- Robust sacrificial polymer templates for 3d interconnected microvasculature in fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 100:361–370, 2017. doi: 10.1016/j.compositesa.2017.05.022.
- Carbon fiber composites with 2D microvascular networks for battery cooling. International Journal of Heat and Mass Transfer, 115:513–522, 2017. doi: 10.1016/j.ijheatmasstransfer.2017.07.047.
- R. Singh. Thermal control of high-powered desktop and laptop microprocessors using two-phase and single-phase loop cooling systems. PhD thesis, RMIT University, 2006.
- S. R. Sklan and B. Li. Thermal metamaterials: functions and prospects. National Science Review, 5(2):138–141, 2018. doi: 10.1093/nsr/nwy005.
- Air-gap transmission lines on organic substrates for low-loss interconnects. IEEE Transactions on Microwave Theory and Techniques, 55(9):1919–1925, 2007. doi: 10.1109/TMTT.2007.904326.
- I. Steen and J. B. Steen. The importance of the legs in the thermoregulation of birds. Acta Physiologica Scandinavica, 63(3):285–291, 1965. doi: 10.1111/j.1748-1716.1965.tb04067.x.
- NASA thermal control technologies for robotic spacecraft. Applied Thermal Engineering, 23(9):1055–1065, 2003. doi: 10.1016/S1359-4311(03)00036-X.
- Computational design of microvascular radiative cooling panels for nanosatellites. Journal of Thermophysics and Heat Transfer, 32(3):605–616, 2018. doi: 10.2514/1.T5381.
- TPRL. Thermophysical Properties Research Laboratory, Inc. 3080 Kent Avenue, West Lafayette, IN 47906, 2023. http://www.tprl.com.
- T. M. Tritt. Thermal Conductivity: Theory, Properties, and Applications. Plenum Publishers, New York, 2004.
- USGS. Water’s density varies with temperature, 2018. URL https://www.usgs.gov/special-topics/water-science-school/science/water-density. Accessed on 10-13-2023.
- Temperature dependence of thermal conductivity, diffusion and specific heat capacity for coal and rocks from coalfield. Thermochimica Acta, 619:41–47, 2015. doi: 10.1016/j.tca.2015.09.018.
- E. H. Wissler. Animal heat and thermal regulation. Human Temperature Control: A Quantitative Approach, pages 1–16, 2018. doi: 10.1007/978-3-662-57397-6˙1.
- An integrated liquid metal thermal switch for active thermal management of electronics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 9(12):2341–2351, 2019. doi: 10.1109/TCPMT.2019.2930089.
- Modeling of thermo-physical properties for FRP composites under elevated and high temperature. Composites Science and Technology, 67(15-16):3098–3109, 2007. doi: 10.1016/j.compscitech.2007.04.019.
- K. Adhikari (7 papers)
- J. F. Patrick (1 paper)
- K. B. Nakshatrala (52 papers)