2000 character limit reached
Robust Bichromatic Classification using Two Lines (2401.02897v3)
Published 5 Jan 2024 in cs.CG
Abstract: Given two sets $R$ and $B$ of $n$ points in the plane, we present efficient algorithms to find a two-line linear classifier that best separates the "red" points in $R$ from the "blue" points in $B$ and is robust to outliers. More precisely, we find a region $\mathcal{W}_B$ bounded by two lines, so either a halfplane, strip, wedge, or double wedge, containing (most of) the blue points $B$, and few red points. Our running times vary between optimal $O(n\log n)$ and around $O(n3)$, depending on the type of region $\mathcal{W}_B$ and whether we wish to minimize only red outliers, only blue outliers, or both.
- On levels in arrangements of lines, segments, planes, and triangles. Discret. Comput. Geom., 19(3):315–331, 1998. doi:10.1007/PL00009348.
- Charu C. Aggarwal, editor. Data Classification: Algorithms and Applications. CRC Press, 2014. URL: https://doi.org/10.1201/b17320, doi:10.1201/B17320.
- Separating bichromatic point sets in the plane by restricted orientation convex hulls. Journal of Global Optimization, 85(4):1003–1036, 2023. doi:10.1007/s10898-022-01238-9.
- The complexity and approximability of finding maximum feasible subsystems of linear relations. Theoretical Computer Science, 147(1&2):181–210, 1995. doi:10.1016/0304-3975(94)00254-G.
- Separability of point sets by k-level linear classification trees. International Journal of Computational Geometry & Applications, 22(2):143–166, 2012. doi:10.1142/S0218195912500021.
- Some lower bounds on geometric separability problems. International Journal of Computational Geometry & Applications, 16(1):1–26, 2006. doi:10.1142/S0218195906001902.
- Dynamic minimum bichromatic separating circle. Theoretical Computer Science, 774:133–142, 2019. doi:10.1016/j.tcs.2016.11.036.
- Minimizing the error of linear separators on linearly inseparable data. Discrete Applied Mathematics, 160(10-11):1441–1452, 2012. doi:10.1016/j.dam.2012.03.009.
- Intersections of double-wedge arrangements. In Proc. 38thsuperscript38normal-th38^{\mathrm{th}}38 start_POSTSUPERSCRIPT roman_th end_POSTSUPERSCRIPT European Workshop on Computational Geometry (EuroCG 2022), pages 58–1, 2022.
- Timothy M. Chan. Low-dimensional linear programming with violations. SIAM Journal on Computing, 34(4):879–893, 2005. doi:10.1137/S0097539703439404.
- Optimal deterministic algorithms for 2-d and 3-d shallow cuttings. Discret. Comput. Geom., 56(4):866–881, 2016. URL: https://doi.org/10.1007/s00454-016-9784-4, doi:10.1007/S00454-016-9784-4.
- Computational geometry: algorithms and applications, 3rd Edition. Springer, 2008.
- Making data structures persistent. Journal of Compututer and Systtem Sciences, 38(1):86–124, 1989. doi:10.1016/0022-0000(89)90034-2.
- Separability with outliers. In Proc. 16th International Symposium on Algorithms and Computation, volume 3827 of Lecture Notes in Computer Science, pages 28–39. Springer, 2005. doi:10.1007/11602613_5.
- Separability by two lines and by nearly straight polygonal chains. Discrete Applied Mathematics, 144(1-2):110–122, 2004. doi:10.1016/j.dam.2003.11.014.
- Separating objects in the plane by wedges and strips. Discrete Applied Mathematics, 109(1-2):109–138, 2001. doi:10.1016/S0166-218X(00)00230-4.
- Red-blue separability problems in 3D. International Journal of Computational Geometry & Applications, 15(2):167–192, 2005. doi:10.1142/S0218195905001646.
- Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. Journal of the ACM, 31(1):114–127, 1984. doi:10.1145/2422.322418.
- D. Sculley and Gabriel M. Wachman. Relaxed online SVMs for spam filtering. In Proc. 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’07, page 415–422. Association for Computing Machinery, 2007. doi:10.1145/1277741.1277813.
- Carlos Seara. On geometric separability. PhD thesis, Univ. Politecnica de Catalunya, 2002.
- Application of classification models on credit card fraud detection. In Proc. 2007 International conference on service systems and service management, pages 1–4. IEEE, 2007.
- Haitao Wang. A simple algorithm for computing the zone of a line in an arrangement of lines. In Proc. 5th Symposium on Simplicity in Algorithms, pages 79–86. SIAM, 2022. doi:10.1137/1.9781611977066.7.