Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy-Preserving Reduced Operator Inference for Efficient Design and Control (2401.02889v2)

Published 5 Jan 2024 in math.NA, cs.LG, cs.NA, and math.DS

Abstract: Many-query computations, in which a computational model for an engineering system must be evaluated many times, are crucial in design and control. For systems governed by partial differential equations (PDEs), typical high-fidelity numerical models are high-dimensional and too computationally expensive for the many-query setting. Thus, efficient surrogate models are required to enable low-cost computations in design and control. This work presents a physics-preserving reduced model learning approach that targets PDEs whose quadratic operators preserve energy, such as those arising in governing equations in many fluids problems. The approach is based on the Operator Inference method, which fits reduced model operators to state snapshot and time derivative data in a least-squares sense. However, Operator Inference does not generally learn a reduced quadratic operator with the energy-preserving property of the original PDE. Thus, we propose a new energy-preserving Operator Inference (EP-OpInf) approach, which imposes this structure on the learned reduced model via constrained optimization. Numerical results using the viscous Burgers' and Kuramoto-Sivashinksy equation (KSE) demonstrate that EP-OpInf learns efficient and accurate reduced models that retain this energy-preserving structure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Benner, P., Gugercin, S., and Willcox, K., “A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems,” SIAM Review, Vol. 57, No. 4, 2015, p. 483–531. 10.1137/130932715, URL http://dx.doi.org/10.1137/130932715.
  2. Rowley, C. W., and Dawson, S. T., “Model Reduction for Flow Analysis and Control,” Annual Review of Fluid Mechanics, Vol. 49, No. 1, 2017, p. 387–417. 10.1146/annurev-fluid-010816-060042, URL http://dx.doi.org/10.1146/annurev-fluid-010816-060042.
  3. Horenko, I., Klein, R., Dolaptchiev, S., and Schütte, C., “Automated Generation of Reduced Stochastic Weather Models I: Simultaneous Dimension and Model Reduction for Time Series Analysis,” Multiscale Modeling & Simulation, Vol. 6, No. 4, 2008, p. 1125–1145. 10.1137/060670535, URL http://dx.doi.org/10.1137/060670535.
  4. Besselink, B., Tabak, U., Lutowska, A., van de Wouw, N., Nijmeijer, H., Rixen, D., Hochstenbach, M., and Schilders, W., “A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control,” Journal of Sound and Vibration, Vol. 332, No. 19, 2013, p. 4403–4422. 10.1016/j.jsv.2013.03.025, URL http://dx.doi.org/10.1016/j.jsv.2013.03.025.
  5. Moore, B., “Principal component analysis in linear systems: Controllability, observability, and model reduction,” IEEE Transactions on Automatic Control, Vol. 26, No. 1, 1981, p. 17–32. 10.1109/tac.1981.1102568, URL http://dx.doi.org/10.1109/TAC.1981.1102568.
  6. 10.1007/978-1-4419-5757-3_1, URL http://dx.doi.org/10.1007/978-1-4419-5757-3_1.
  7. Lumley, J. L., “The structure of inhomogeneous turbulent flows,” Atmospheric turbulence and radio wave propagation, 1967, pp. 166–178.
  8. Sirovich, L., “Turbulence and the dynamics of coherent structures. I. Coherent structures,” Quarterly of applied mathematics, Vol. 45, No. 3, 1987, pp. 561–571.
  9. Berkooz, G., Holmes, P., and Lumley, J. L., “The proper orthogonal decomposition in the analysis of turbulent flows,” Annual review of fluid mechanics, Vol. 25, No. 1, 1993, pp. 539–575.
  10. Willcox, K., and Peraire, J., “Balanced Model Reduction via the Proper Orthogonal Decomposition,” AIAA Journal, Vol. 40, No. 11, 2002, p. 2323–2330. 10.2514/2.1570, URL http://dx.doi.org/10.2514/2.1570.
  11. Peterson, J. S., “The Reduced Basis Method for Incompressible Viscous Flow Calculations,” SIAM Journal on Scientific and Statistical Computing, Vol. 10, No. 4, 1989, p. 777–786. 10.1137/0910047, URL http://dx.doi.org/10.1137/0910047.
  12. Veroy, K., and Patera, A. T., “Certified real-time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced-basis a posteriori error bounds,” International Journal for Numerical Methods in Fluids, Vol. 47, No. 8–9, 2005, p. 773–788. 10.1002/fld.867, URL http://dx.doi.org/10.1002/fld.867.
  13. Schmid, P. J., “Dynamic mode decomposition of numerical and experimental data,” Journal of Fluid Mechanics, Vol. 656, 2010, p. 5–28. 10.1017/s0022112010001217, URL http://dx.doi.org/10.1017/S0022112010001217.
  14. Peherstorfer, B., and Willcox, K., “Data-driven operator inference for nonintrusive projection-based model reduction,” Computer Methods in Applied Mechanics and Engineering, Vol. 306, 2016, pp. 196–215.
  15. Qian, E., Farcaş, I.-G., and Willcox, K., “Reduced Operator Inference for Nonlinear Partial Differential Equations,” SIAM Journal on Scientific Computing, Vol. 44, No. 4, 2022, p. A1934–A1959. 10.1137/21m1393972, URL http://dx.doi.org/10.1137/21M1393972.
  16. McQuarrie, S. A., Huang, C., and Willcox, K. E., “Data-driven reduced-order models via regularised Operator Inference for a single-injector combustion process,” Journal of the Royal Society of New Zealand, Vol. 51, No. 2, 2021, pp. 194–211. 10.1080/03036758.2020.1863237, URL https://doi.org/10.1080/03036758.2020.1863237, publisher: Taylor & Francis _eprint: https://doi.org/10.1080/03036758.2020.1863237.
  17. Qian, E., Kramer, B., Peherstorfer, B., and Willcox, K., “Lift & Learn: Physics-informed machine learning for large-scale nonlinear dynamical systems,” Physica D: Nonlinear Phenomena, Vol. 406, 2020, p. 132401. 10.1016/j.physd.2020.132401, URL https://linkinghub.elsevier.com/retrieve/pii/S0167278919307651.
  18. Swischuk, R., Mainini, L., Peherstorfer, B., and Willcox, K., “Projection-based model reduction: Formulations for physics-based machine learning,” Computers & Fluids, Vol. 179, 2019, p. 704–717. 10.1016/j.compfluid.2018.07.021, URL http://dx.doi.org/10.1016/j.compfluid.2018.07.021.
  19. Bhattacharya, K., Hosseini, B., Kovachki, N. B., and Stuart, A. M., “Model Reduction And Neural Networks For Parametric PDEs,” The SMAI journal of computational mathematics, Vol. 7, 2021, p. 121–157. 10.5802/smai-jcm.74, URL http://dx.doi.org/10.5802/smai-jcm.74.
  20. Hesthaven, J., and Ubbiali, S., “Non-intrusive reduced order modeling of nonlinear problems using neural networks,” Journal of Computational Physics, Vol. 363, 2018, p. 55–78. 10.1016/j.jcp.2018.02.037, URL http://dx.doi.org/10.1016/j.jcp.2018.02.037.
  21. Gao, H., Wang, J.-X., and Zahr, M. J., “Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning,” Physica D: Nonlinear Phenomena, Vol. 412, 2020, p. 132614. 10.1016/j.physd.2020.132614, URL http://dx.doi.org/10.1016/j.physd.2020.132614.
  22. Brunton, S. L., Proctor, J. L., and Kutz, J. N., “Discovering governing equations from data by sparse identification of nonlinear dynamical systems,” Proceedings of the National Academy of Sciences, Vol. 113, No. 15, 2016, p. 3932–3937. 10.1073/pnas.1517384113, URL http://dx.doi.org/10.1073/pnas.1517384113.
  23. Rudy, S. H., Brunton, S. L., Proctor, J. L., and Kutz, J. N., “Data-driven discovery of partial differential equations,” Science Advances, Vol. 3, No. 4, 2017. 10.1126/sciadv.1602614, URL http://dx.doi.org/10.1126/sciadv.1602614.
  24. Baddoo, P. J., Herrmann, B., McKeon, B. J., Nathan Kutz, J., and Brunton, S. L., “Physics-informed dynamic mode decomposition,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 479, No. 2271, 2023, p. 20220576. 10.1098/rspa.2022.0576, URL https://royalsocietypublishing.org/doi/full/10.1098/rspa.2022.0576, publisher: Royal Society.
  25. Sharma, H., Wang, Z., and Kramer, B., “Hamiltonian operator inference: Physics-preserving learning of reduced-order models for canonical Hamiltonian systems,” Physica D: Nonlinear Phenomena, Vol. 431, 2022, p. 133122. 10.1016/j.physd.2021.133122, URL https://www.sciencedirect.com/science/article/pii/S0167278921002682.
  26. Gruber, A., and Tezaur, I., “Canonical and noncanonical Hamiltonian operator inference,” Computer Methods in Applied Mechanics and Engineering, Vol. 416, 2023, p. 116334. 10.1016/j.cma.2023.116334, URL http://dx.doi.org/10.1016/j.cma.2023.116334.
  27. Sharma, H., and Kramer, B., “Preserving Lagrangian structure in data-driven reduced-order modeling of large-scale dynamical systems,” , Nov. 2022. 10.48550/arXiv.2203.06361, URL http://arxiv.org/abs/2203.06361, arXiv:2203.06361 [cs, math].
  28. Schlegel, M., and Noack, B. R., “On long-term boundedness of Galerkin models,” Journal of Fluid Mechanics, Vol. 765, 2015, p. 325–352. 10.1017/jfm.2014.736.
  29. Kaptanoglu, A. A., Callaham, J. L., Aravkin, A., Hansen, C. J., and Brunton, S. L., “Promoting global stability in data-driven models of quadratic nonlinear dynamics,” Phys. Rev. Fluids, Vol. 6, 2021a, p. 094401. 10.1103/PhysRevFluids.6.094401, URL https://link.aps.org/doi/10.1103/PhysRevFluids.6.094401.
  30. Kaptanoglu, A. A., Morgan, K. D., Hansen, C. J., and Brunton, S. L., “Physics-constrained, low-dimensional models for magnetohydrodynamics: First-principles and data-driven approaches,” Physical Review E, Vol. 104, No. 1, 2021b. 10.1103/physreve.104.015206, URL http://dx.doi.org/10.1103/PhysRevE.104.015206.
  31. Goyal, P., Duff, I. P., and Benner, P., “Guaranteed Stable Quadratic Models and their applications in SINDy and Operator Inference,” , 2023. 10.48550/ARXIV.2308.13819, URL https://arxiv.org/abs/2308.13819.
  32. Magnus, J. R., and Neudecker, H., “The Elimination Matrix: Some Lemmas and Applications,” SIAM Journal on Algebraic Discrete Methods, Vol. 1, No. 4, 1980, pp. 422–449. 10.1137/0601049, URL https://doi.org/10.1137/0601049.
  33. Burgers, J. M., “A mathematical model illustrating the theory of turbulence,” Advances in applied mechanics, Vol. 1, 1948, pp. 171–199.
  34. Aref, H., and Daripa, P. K., “Note on Finite Difference Approximations to Burgers’ Equation,” SIAM Journal on Scientific and Statistical Computing, Vol. 5, No. 4, 1984, pp. 856–864. 10.1137/0905060, URL http://epubs.siam.org/doi/10.1137/0905060.
  35. Kuramoto, Y., “Diffusion-induced chaos in reaction systems,” Progress of Theoretical Physics Supplement, Vol. 64, 1978, pp. 346–367.
  36. Sivashinsky, G. I., “Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations,” Acta astronautica, Vol. 4, No. 11-12, 1977, pp. 1207–1221.
  37. Hyman, J. M., Nicolaenko, B., and Zaleski, S., “Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces,” Physica D: Nonlinear Phenomena, Vol. 23, No. 1, 1986, pp. 265–292. 10.1016/0167-2789(86)90136-3, URL https://www.sciencedirect.com/science/article/pii/0167278986901363.
  38. 10.1201/9780429492563, URL http://dx.doi.org/10.1201/9780429492563.
  39. 10.1007/978-1-4612-3506-4, URL http://dx.doi.org/10.1007/978-1-4612-3506-4.
  40. Lu, F., Lin, K. K., and Chorin, A. J., “Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation,” Physica D: Nonlinear Phenomena, Vol. 340, 2017, pp. 46–57. 10.1016/j.physd.2016.09.007, URL https://doi.org/10.1016/j.physd.2016.09.007.
  41. Cvitanović, P., Davidchack, R. L., and Siminos, E., “On the State Space Geometry of the Kuramoto–Sivashinsky Flow in a Periodic Domain,” SIAM Journal on Applied Dynamical Systems, Vol. 9, No. 1, 2010, pp. 1–33. 10.1137/070705623, URL https://epubs.siam.org/doi/10.1137/070705623, publisher: Society for Industrial and Applied Mathematics.
  42. Sabetghadam, F., and Jafarpour, A., “α𝛼\alphaitalic_α Regularization of the POD-Galerkin dynamical systems of the Kuramoto–Sivashinsky equation,” Applied Mathematics and Computation, Vol. 218, No. 10, 2012, pp. 6012–6026. 10.1016/j.amc.2011.11.083, URL https://www.sciencedirect.com/science/article/pii/S0096300311014299.
  43. Chen, S., and Billings, S. A., “Representations of non-linear systems: the NARMAX model,” International Journal of Control, Vol. 49, No. 3, 1989, p. 1013–1032. 10.1080/00207178908559683, URL http://dx.doi.org/10.1080/00207178908559683.
  44. Almeida, J. L. S., Pires, A. C., Cid, K. F. V., and Nogueira, A. C., “Non-intrusive operator inference for chaotic systems,” IEEE Transactions on Artificial Intelligence, 2022, pp. 1–14. 10.1109/TAI.2022.3207449, URL https://ieeexplore.ieee.org/abstract/document/9893912, conference Name: IEEE Transactions on Artificial Intelligence.
  45. Claus, S., “Billingsley, P.: Ergodic Theory and Information. John Wiley & Sons, Inc., New York 1965. XIII + 193 S. Abb., Tab. Preis 64 s.” Biometrische Zeitschrift, Vol. 10, No. 1, 1968, pp. 84–85. https://doi.org/10.1002/bimj.19680100113, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.19680100113.
  46. 10.1007/978-1-4615-6927-5, URL https://doi.org/10.1007/978-1-4615-6927-5.
  47. Sinai, Y., “The Stochasticity of Dynamical Systems,” Vol. 1, No. 1, 1981, pp. 100–119.
  48. Anishchenko, V. S., Vadivasova, T. E., Okrokvertskhov, G. A., and Strelkova, G. I., “Correlation analysis of dynamical chaos,” Physica A: Statistical Mechanics and its Applications, Vol. 325, No. 1, 2003, pp. 199–212. 10.1016/S0378-4371(03)00199-7, URL https://www.sciencedirect.com/science/article/pii/S0378437103001997.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets