Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complex systems approach to natural language (2401.02772v1)

Published 5 Jan 2024 in physics.soc-ph, cs.CL, stat.AP, and nlin.AO

Abstract: The review summarizes the main methodological concepts used in studying natural language from the perspective of complexity science and documents their applicability in identifying both universal and system-specific features of language in its written representation. Three main complexity-related research trends in quantitative linguistics are covered. The first part addresses the issue of word frequencies in texts and demonstrates that taking punctuation into consideration restores scaling whose violation in the Zipf's law is often observed for the most frequent words. The second part introduces methods inspired by time series analysis, used in studying various kinds of correlations in written texts. The related time series are generated on the basis of text partition into sentences or into phrases between consecutive punctuation marks. It turns out that these series develop features often found in signals generated by complex systems, like long-range correlations or (multi)fractal structures. Moreover, it appears that the distances between punctuation marks comply with the discrete variant of the Weibull distribution. In the third part, the application of the network formalism to natural language is reviewed, particularly in the context of the so-called word-adjacency networks. Parameters characterizing topology of such networks can be used for classification of texts, for example, from a stylometric perspective. Network approach can also be applied to represent the organization of word associations. Structure of word-association networks turns out to be significantly different from that observed in random networks, revealing genuine properties of language. Finally, punctuation seems to have a significant impact not only on the language's information-carrying ability but also on its key statistical properties, hence it is recommended to consider punctuation marks on a par with words.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (294)
  1. doi:10.4324/9780203838105.
  2. doi:10.3758/s13423-016-1101-y.
  3. doi:10.1098/rstb.2011.0190.
  4. doi:10.1126/science.185.4152.663.
  5. doi:10.1007/bf00366482.
  6. doi:10.1126/science.289.5483.1355.
  7. doi:10.1073/pnas.0509918103.
  8. doi:10.1016/j.mambio.2010.06.006.
  9. doi:10.1038/35065597.
  10. doi:10.1016/s0065-3454(01)80007-3.
  11. doi:10.1098/rstb.2001.1056.
  12. doi:10.1037/0735-7036.119.2.145.
  13. doi:10.1016/j.anbehav.2006.08.017.
  14. doi:10.1007/s10164-007-0047-y.
  15. doi:10.1242/jeb.014795.
  16. doi:10.1007/s10071-008-0203-y.
  17. doi:10.1038/scientificamerican0960-88.
  18. doi:10.1007/s12304-014-9203-2.
  19. doi:10.1093/oxfordhb/9780199541119.001.0001.
  20. doi:10.3389/fpsyg.2014.00401.
  21. doi:10.1006/jhev.2000.0435.
  22. doi:10.1038/nature01400.
  23. doi:10.3758/s13423-016-1112-8.
  24. doi:10.1093/jole/lzx019.
  25. doi:10.1093/jole/lzx018.
  26. doi:10.1093/oxfordjournals.molbev.a025761.
  27. doi:10.1046/j.1469-7580.2000.19710019.x.
  28. doi:10.1086/318206.
  29. doi:10.1111/j.1469-7580.2007.00840.x.
  30. doi:10.1038/nature09709.
  31. doi:10.1038/35020570.
  32. doi:10.1007/s10071-015-0845-5.
  33. doi:10.1007/s10071-015-0905-x.
  34. doi:10.1007/s10071-015-0936-3.
  35. doi:10.1007/s10071-018-1167-1.
  36. doi:10.1017/s0140525x0600906x.
  37. doi:10.1126/science.298.5598.1569.
  38. doi:10.1073/pnas.1606380114.
  39. doi:10.1109/bigdata.2014.7004454.
  40. doi:10.1126/science.1199644.
  41. doi:10.5281/ZENODO.3754591.
  42. doi:10.1038/nature02029.
  43. doi:10.1088/1742-5468/2008/08/p08012.
  44. doi:10.2307/1006517.
  45. doi:10.1515/tlir.19.1-2.9.
  46. doi:10.1515/tlir.19.1-2.151.
  47. doi:10.1016/b978-012369374-7/50028-6.
  48. doi:10.1016/j.neuron.2010.08.038.
  49. doi:10.1016/j.neuroimage.2012.04.062.
  50. doi:10.1093/oxfordhb/9780190672027.001.0001.
  51. doi:10.1126/science.170.3961.940.
  52. doi:10.1016/j.bandl.2016.08.004.
  53. doi:10.1038/nrn2113.
  54. doi:10.1073/pnas.0805234105.
  55. doi:10.1016/j.plrev.2009.06.001.
  56. doi:10.3390/e23091148. URL https://doi.org/10.3390/e23091148
  57. doi:10.1155/2019/9894571.
  58. doi:10.1007/s10339-015-0656-2.
  59. doi:10.1086/289841.
  60. doi:10.1080/09515089708573231.
  61. doi:10.1111/j.0268-1064.2005.00287.x.
  62. doi:10.1146/annurev.an.21.100192.002121.
  63. doi:10.1016/b0-08-043076-7/03042-4.
  64. doi:10.1086/431525.
  65. doi:10.1016/j.cognition.2008.04.007.
  66. doi:10.1111/lang.12188.
  67. doi:10.1007/978-0-585-35958-8_1.
  68. doi:10.1109/mci.2018.2840738.
  69. doi:10.1007/978-981-10-5209-5.
  70. doi:10.1515/9783112316009.
  71. doi:10.1016/0022-5193(68)90079-9.
  72. doi:10.1016/0022-5193(68)90080-5.
  73. doi:10.2307/408930.
  74. doi:10.2307/409735.
  75. doi:10.3758/s13423-014-0585-6.
  76. doi:10.1002/asi.20524.
  77. doi:10.1098/rsos.200008.
  78. doi:10.1080/09296174.2014.882187.
  79. doi:10.1038/srep43862.
  80. doi:10.3390/e22020224.
  81. doi:10.1007/978-3-319-24403-7_2.
  82. doi:10.1016/j.physrep.2012.01.007.
  83. doi:10.1126/science.177.4047.393.
  84. doi:10.1007/s11424-017-6117-5.
  85. doi:10.1002/cplx.6130010405.
  86. doi:10.1016/0167-2789(86)90237-x.
  87. doi:10.1016/0167-2789(90)90064-v.
  88. doi:10.1103/physrevlett.84.5991.
  89. doi:10.1103/physreve.73.056210.
  90. doi:10.1103/physreve.84.016224.
  91. doi:10.1126/science.156.3775.636.
  92. doi:10.1126/science.284.5411.102.
  93. doi:10.1177/030913330102500103.
  94. doi:10.1093/comnet/cnz017.
  95. doi:10.1073/pnas.012583099.
  96. doi:10.1126/science.286.5439.509.
  97. doi:10.1103/revmodphys.74.47.
  98. doi:10.1017/cbo9781139173179.
  99. doi:10.1016/j.tics.2011.03.006.
  100. doi:10.1523/jneurosci.23-35-11167.2003.
  101. doi:10.1523/jneurosci.0540-04.2004.
  102. doi:10.1016/j.physa.2004.05.064.
  103. doi:10.1007/978-3-642-76877-4_22.
  104. doi:10.1002/cplx.10047.
  105. doi:10.1089/brain.2011.0055.
  106. doi:10.1038/nrn2575.
  107. doi:10.1038/nphys1803.
  108. doi:10.5506/aphyspolb.49.1955.
  109. doi:10.1016/s0370-1573(02)00634-8.
  110. doi:10.1098/rsos.180643.
  111. doi:10.1016/j.physrep.2020.10.005.
  112. doi:10.1140/epjb/e2003-00050-6.
  113. doi:10.3390/e22091043.
  114. doi:10.1016/j.physa.2004.08.025.
  115. doi:10.1016/j.physa.2004.11.019.
  116. doi:10.1016/j.physrep.2020.09.005.
  117. doi:10.1126/science.284.5411.105.
  118. doi:10.1029/2001jd000548.
  119. doi:10.1088/2632-072x/abd8db.
  120. doi:10.1103/physrevlett.115.268501.
  121. doi:10.1016/j.plrev.2015.07.006.
  122. doi:10.1098/rspb.1997.0228.
  123. doi:10.1098/rspb.2006.3636.
  124. doi:10.1038/nphys3457.
  125. doi:10.1038/381600a0.
  126. doi:10.1103/revmodphys.87.925.
  127. doi:10.1103/physreve.66.016128.
  128. doi:10.1103/physrevlett.86.3200.
  129. doi:10.1038/nature05670.
  130. doi:10.1103/physreve.68.065103.
  131. doi:10.1016/j.tics.2009.08.002.
  132. doi:10.1073/pnas.1105239108.
  133. doi:10.1016/j.joi.2017.09.009.
  134. doi:10.1038/35082140.
  135. doi:10.1080/0022250x.1971.9989794.
  136. doi:10.1016/s0304-3975(98)00075-9.
  137. doi:10.1080/00207166808803030.
  138. doi:10.1016/s0019-9958(64)90223-2.
  139. doi:10.1016/s0019-9958(64)90131-7.
  140. doi:10.1145/321526.321530.
  141. doi:10.3390/e22040408.
  142. doi:10.1002/(sici)1099-0526(199609/10)2:1<44::aid-cplx10>3.0.co;2-x.
  143. doi:10.1093/oso/9780195159769.003.0028.
  144. doi:10.1086/375469.
  145. doi:10.1109/tit.2010.2053892.
  146. doi:10.1007/978-3-7091-6597-3_8.
  147. doi:10.1002/j.1538-7305.1948.tb01338.x.
  148. doi:10.1002/j.1538-7305.1948.tb00917.x.
  149. doi:10.1016/0003-4916(88)90094-2.
  150. doi:10.1103/physreve.59.275.
  151. doi:10.1109/tit.1976.1055501.
  152. doi:10.1109/tit.1977.1055714.
  153. doi:10.1109/tit.1978.1055934.
  154. doi:10.1109/mc.1984.1659158.
  155. doi:10.1109/18.669425.
  156. doi:10.3390/entropy-e10020071.
  157. doi:10.1007/978-1-4899-2124-6.
  158. doi:10.1515/zna-1988-1221.
  159. doi:10.1038/335405a0.
  160. doi:10.1007/978-3-642-16083-7_14.
  161. doi:10.1093/oxfordhb/9780199541119.013.0063.
  162. doi:10.2307/411991.
  163. doi:10.1515/9783110868555.181.
  164. doi:10.1162/089120103321337412.
  165. doi:10.1162/106454699568809.
  166. doi:10.1007/3-540-48304-7_88.
  167. doi:10.1016/j.physa.2009.03.038.
  168. doi:10.1080/00107510500052444.
  169. doi:10.1016/j.physrep.2013.11.002.
  170. doi:10.1007/978-1-4614-1800-9_142.
  171. doi:10.1119/1.1975156.
  172. doi:10.1007/978-1-4614-7101-1.
  173. doi:10.1103/physreve.100.012108.
  174. doi:10.1103/physrevresearch.1.033172.
  175. doi:10.1007/s00283-010-9159-2.
  176. doi:10.1137/070710111.
  177. doi:10.1142/s0219525902000468.
  178. doi:10.1109/parbse.1990.77200.
  179. doi:10.1177/016555159402000208.
  180. doi:10.1140/epjb/e2005-00121-8.
  181. doi:10.1016/0378-4371(95)00069-j.
  182. doi:10.1088/1742-5468/abe947.
  183. doi:10.1016/j.physa.2008.07.016.
  184. doi:10.1371/journal.pone.0014139.
  185. doi:10.1016/j.ins.2004.03.006.
  186. doi:10.1080/09296170902850358.
  187. doi:10.2307/1419346.
  188. doi:10.1016/j.physrep.2010.12.004.
  189. doi:10.1038/109177a0.
  190. doi:10.1098/rstb.1925.0002.
  191. doi:10.1093/biomet/42.3-4.425.
  192. doi:10.1002/asi.4630270505.
  193. doi:10.1126/science.159.3810.56.
  194. doi:10.1098/rsif.2014.0378.
  195. doi:10.1002/9781119625384.
  196. doi:10.1038/srep00812.
  197. doi:10.1076/jqul.8.3.165.4101.
  198. doi:10.1016/s0378-4371(01)00355-7.
  199. doi:10.1371/journal.pone.0129031.
  200. doi:10.1016/j.ins.2016.09.051.
  201. doi:10.1201/9780203738481.
  202. doi:10.1103/physreve.73.016117.
  203. doi:10.1103/physreve.61.4991.
  204. doi:10.1137/1010093.
  205. doi:10.1029/97wr01982.
  206. doi:10.1155/2015/485623.
  207. doi:10.1063/1.3537868.
  208. doi:10.1016/0167-2789(89)90220-0.
  209. doi:10.1371/journal.pone.0019875.
  210. doi:10.1016/j.cortex.2013.08.008.
  211. doi:10.3390/e25020243.
  212. doi:10.1142/s0218348x02001257.
  213. doi:10.1103/PhysRevE.86.031108.
  214. doi:10.1371/journal.pone.0007678.
  215. doi:10.1016/j.ins.2015.10.023.
  216. doi:10.1073/pnas.1502134112.
  217. doi:10.1016/j.plrev.2017.03.002.
  218. doi:10.1016/0960-0779(92)90058-u.
  219. doi:10.1016/0960-0779(94)90018-3.
  220. doi:10.1016/0378-4371(95)00025-3.
  221. doi:10.1103/physreve.62.6103.
  222. doi:10.1073/pnas.0510673103.
  223. doi:10.1093/llc/fqz092.
  224. doi:10.1371/journal.pone.0024331.
  225. doi:10.1016/j.chaos.2023.113183.
  226. doi:10.1109/tr.1975.5214915.
  227. doi:10.1142/s0218127494000204.
  228. doi:10.1103/physreva.33.1141.
  229. doi:10.1007/978-94-009-2653-0_40.
  230. doi:10.1103/physreva.42.4528.
  231. doi:10.1016/0378-4371(90)90361-u.
  232. doi:10.1006/aama.1995.1007.
  233. doi:10.1016/s0378-4371(02)01383-3.
  234. doi:10.1103/physreve.49.1685.
  235. doi:10.1016/s0378-4371(01)00144-3.
  236. doi:10.1103/PhysRevE.74.016103.
  237. doi:10.1016/s0378-4371(01)00341-7.
  238. doi:10.1209/0295-5075/88/60003.
  239. doi:10.1103/physreve.107.034139.
  240. doi:10.1016/j.chaos.2012.06.016.
  241. doi:10.1103/PhysRevE.91.030902.
  242. doi:10.1103/physrevlett.50.346.
  243. doi:10.1016/j.physa.2016.11.028.
  244. doi:10.1093/llc/fqac062.
  245. doi:10.3389/fpsyg.2021.599063.
  246. doi:10.1016/j.physa.2019.04.171.
  247. doi:10.1109/TPAMI.2023.3245886.
  248. doi:10.1073/pnas.0400087101.
  249. doi:10.1016/j.physa.2006.12.022.
  250. doi:10.1088/1742-5468/2008/10/p10008.
  251. doi:10.1017/9781316779422.
  252. doi:10.5486/pmd.1959.6.3-4.12.
  253. doi:10.1515/9781400841356.38.
  254. doi:10.1214/aoms/1177706098.
  255. doi:10.1007/11533719_45.
  256. doi:10.1016/j.patcog.2012.09.015.
  257. doi:10.1016/j.neuroimage.2014.10.015.
  258. doi:10.1103/physreve.70.046126.
  259. doi:10.1038/nature03248.
  260. doi:10.1088/1742-5468/2007/03/p03006.
  261. doi:10.1038/nphys266.
  262. doi:10.1103/physrevlett.96.018701.
  263. doi:10.1016/j.physa.2012.12.001.
  264. doi:10.1016/j.ins.2008.10.032.
  265. doi:10.1109/tpami.2009.36.
  266. doi:10.1016/j.physa.2010.08.052.
  267. doi:10.1017/cbo9780511976247.
  268. doi:10.1088/0305-4470/39/48/002.
  269. doi:10.1016/j.physa.2006.12.048.
  270. doi:10.1007/s10462-009-9135-4.
  271. doi:10.1038/srep12209.
  272. doi:10.1002/(sici)1097-4571(1999)50:3<233::aid-asi6>3.0.co;2-8.
  273. doi:10.1023/a:1005634925734.
  274. doi:10.1007/s11434-010-4114-3.
  275. doi:10.1016/j.ins.2019.01.040.
  276. doi:10.1016/s0169-7161(04)24011-1.
  277. doi:10.1103/PhysRevE.91.032810.
  278. doi:10.1103/PhysRevLett.90.058701.
  279. doi:10.1103/PhysRevE.70.056110.
  280. doi:10.1209/epl/i2000-00400-0. URL https://dx.doi.org/10.1209/epl/i2000-00400-0
  281. doi:10.1145/219717.219748.
  282. doi:10.1093/oxfordhb/9780199842193.013.001.
  283. doi:10.1016/s0022-5371(69)80069-1.
  284. doi:10.1007/978-90-481-8847-5_10.
  285. doi:10.1207/s15516709cog2901_3.
  286. doi:10.1093/oxfordhb/9780199641604.013.018.
  287. doi:10.1037/0278-7393.27.5.1147.
  288. doi:10.1371/journal.pone.0248986.
  289. doi:10.3758/brm.40.1.213.
  290. doi:10.3758/bf03195588.
  291. doi:10.1080/14640748108400805.
  292. doi:10.1016/j.ins.2023.119124.
  293. doi:10.1016/s0019-9958(59)90362-6.
  294. doi:10.1007/978-1-4613-8476-2.
Citations (9)

Summary

We haven't generated a summary for this paper yet.

HackerNews