Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AG-ReID.v2: Bridging Aerial and Ground Views for Person Re-identification (2401.02634v2)

Published 5 Jan 2024 in cs.CV

Abstract: Aerial-ground person re-identification (Re-ID) presents unique challenges in computer vision, stemming from the distinct differences in viewpoints, poses, and resolutions between high-altitude aerial and ground-based cameras. Existing research predominantly focuses on ground-to-ground matching, with aerial matching less explored due to a dearth of comprehensive datasets. To address this, we introduce AG-ReID.v2, a dataset specifically designed for person Re-ID in mixed aerial and ground scenarios. This dataset comprises 100,502 images of 1,615 unique individuals, each annotated with matching IDs and 15 soft attribute labels. Data were collected from diverse perspectives using a UAV, stationary CCTV, and smart glasses-integrated camera, providing a rich variety of intra-identity variations. Additionally, we have developed an explainable attention network tailored for this dataset. This network features a three-stream architecture that efficiently processes pairwise image distances, emphasizes key top-down features, and adapts to variations in appearance due to altitude differences. Comparative evaluations demonstrate the superiority of our approach over existing baselines. We plan to release the dataset and algorithm source code publicly, aiming to advance research in this specialized field of computer vision. For access, please visit https://github.com/huynguyen792/AG-ReID.v2.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. H. Hoi, “Deep learning for person re-identification: A survey and outlook,” IEEE transactions on pattern analysis and machine intelligence, vol. PP, 2021.
  2. Z. Wang, Z. Wang, Y. Wu, J. Wang, and S. Satoh, “Beyond intra-modality discrepancy: A comprehensive survey of heterogeneous person re-identification,” in International Joint Conference on Artificial Intelligence, 2020.
  3. L. Zheng, Y. Yang, and A. Hauptmann, “Person re-identification: Past, present and future,” ArXiv, vol. abs/1610.02984, 2016.
  4. W. Liu, X. Chang, L. Chen, D. Q. Phung, X. Zhang, Y. Yang, and A. G. Hauptmann, “Pair-based uncertainty and diversity promoting early active learning for person re-identification,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 11, pp. 1–15, 2020.
  5. Z. Li, W. Liu, X. Chang, L. Yao, M. Prakash, and H. Zhang, “Domain-aware unsupervised cross-dataset person re-identification,” in Advanced Data Mining and Applications, 2019.
  6. K. Nguyen, C. Fookes, S. Sridharan, Y. Tian, F. Liu, X. Liu, and A. Ross, “The state of aerial surveillance: A survey,” CoRR, vol. abs/2201.03080, 2022. [Online]. Available: https://arxiv.org/abs/2201.03080
  7. T. Li, J. Liu, W. Zhang, Y. Ni, W. Wang, and Z. Li, “Uav-human: A large benchmark for human behavior understanding with unmanned aerial vehicles,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16 261–16 270, 2021.
  8. X. Yu, Y. Gong, N. Jiang, Q. Ye, and Z. Han, “Scale match for tiny person detection,” IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1246–1254, 2020.
  9. F. Granelli, C. Sacchi, R. Bassoli, R. Cohen, and I. Ashkenazi, “A dynamic and flexible architecture based on uavs for border security and safety,” in Advanced Technologies for Security Applications.   Dordrecht: Springer Netherlands, 2020, pp. 295–306.
  10. A. Singh, D. Patil, and S. N. Omkar, “Eye in the sky: Real-time drone surveillance system (dss) for violent individuals identification using scatternet hybrid deep learning network,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1710–17 108, 2018.
  11. G. Soldi, D. Gaglione, N. Forti, A. D. Simone, F. C. Daffinà, G. Bottini, D. Quattrociocchi, L. M. Millefiori, P. Braca, S. Carniel, P. K. Willett, A. Iodice, D. Riccio, and A. Farina, “Space-based global maritime surveillance. part i: Satellite technologies,” IEEE Aerospace and Electronic Systems Magazine, vol. 36, pp. 8–28, 2021.
  12. F. Greenwood, “Can a police drone recognize your face?” https://slate.com/technology/2020/07/police-drone-facial-recognition.html, 2021. [Online]. Available: https://slate.com/technology/2020/07/police-drone-facial-recognition.html
  13. S. V. A. Kumar, E. Yaghoubi, A. Das, B. S. Harish, and H. Proença, “The p-destre: A fully annotated dataset for pedestrian detection, tracking, and short/long-term re-identification from aerial devices,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 1696–1708, 2021.
  14. S. Zhang, Q. Zhang, X. Wei, P. Wang, B. Jiao, and Y. Zhang, “Person re-identification in aerial imagery,” IEEE Transactions on Multimedia, vol. 23, pp. 281–291, 2019.
  15. A. Schumann and J. Metzler, “Person re-identification across aerial and ground-based cameras by deep feature fusion,” in Defense + Security, 2017.
  16. H. Nguyen, K. Nguyen, S. Sridharan, and C. Fookes, “Aerial-ground person re-id,” 2023.
  17. L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable person re-identification: A benchmark,” IEEE International Conference on Computer Vision (ICCV), pp. 1116–1124, 2015.
  18. M. Gou, S. Karanam, W. Liu, O. I. Camps, and R. J. Radke, “Dukemtmc4reid: A large-scale multi-camera person re-identification dataset,” IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1425–1434, 2017.
  19. H. Luo, Y. Gu, X. Liao, S. Lai, and W. Jiang, “Bag of tricks and a strong baseline for deep person re-identification,” IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1487–1495, 2019.
  20. G. Wang, Y. Yuan, X. Chen, J. Li, and X. Zhou, “Learning discriminative features with multiple granularities for person re-identification,” Proceedings of the 26th ACM international conference on Multimedia, 2018.
  21. F. Qi, B. Yan, L. Cao, and H. Wang, “Stronger baseline for person re-identification,” ArXiv, vol. abs/2112.01059, 2021.
  22. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.
  23. M. Broström, “Real-time multi-camera multi-object tracker using yolov5 and strongsort with osnet,” https://github.com/mikel-brostrom/Yolov5_StrongSORT_OSNet, 2022.
  24. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” in International Conference on Representation Learning (ICLR), vol. abs/2010.11929, 2021.
  25. Z. Zheng, X. Yang, Z. Yu, L. Zheng, Y. Yang, and J. Kautz, “Joint discriminative and generative learning for person re-identification,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2133–2142, 2019.
  26. J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan, X. Wang, W. Liu, and B. Xiao, “Deep high-resolution representation learning for visual recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, pp. 3349–3364, 2019.
  27. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” ArXiv, vol. abs/2103.14030, 2021.
  28. Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong, F. Wei, and B. Guo, “Swin transformer v2: Scaling up capacity and resolution,” in International Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  29. D. Chung, K. Tahboub, and E. J. Delp, “A two stream siamese convolutional neural network for person re-identification,” IEEE International Conference on Computer Vision (ICCV), pp. 1992–2000, 2017.
  30. J. Xie, Y. Ge, J. Zhang, S. Huang, C. Feiyu, and H. Wang, “Low-resolution assisted three-stream network for person re-identification,” The Visual Computer, vol. 38, pp. 2515–2525, 2021.
  31. A. Khatun, S. Denman, S. Sridharan, and C. Fookes, “Joint identification-verification for person re-identification: A four stream deep learning approach with improved quartet loss function,” Comput. Vis. Image Underst., vol. 197-198, p. 102989, 2020.
  32. Z. Wang, F. Zhu, S. Tang, R. Zhao, L. He, and J. Song, “Feature erasing and diffusion network for occluded person re-identification,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 4754–4763.
  33. A. Khatun, S. Denman, S. Sridharan, and C. Fookes, “Pose-driven attention-guided image generation for person re-identification,” Pattern Recognition, vol. 137, p. 109246, 2023.
  34. C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie, Y. Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei, and X. Wei, “Yolov6: A single-stage object detection framework for industrial applications,” 2022.
  35. Y. Lin, L. Zheng, Z. Zheng, Y. Wu, and Y. Yang, “Improving person re-identification by attribute and identity learning,” ArXiv, vol. abs/1703.07220, 2019.
  36. L. He, X. Liao, W. Liu, X. Liu, P. Cheng, and T. Mei, “Fastreid: A pytorch toolbox for general instance re-identification,” ArXiv, vol. abs/2006.02631, 2020.
  37. K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Omni-scale feature learning for person re-identification,” IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3701–3711, 2019.
  38. S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, “Transreid: Transformer-based object re-identification,” IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14 993–15 002, 2021.
  39. B. Xu, L. He, X. Liao, W. Liu, Z. Sun, and T. Mei, “Black re-id: A head-shoulder descriptor for the challenging problem of person re-identification,” Proceedings of the 28th ACM International Conference on Multimedia, 2020.
  40. M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial transformer networks,” in NIPS, 2015.
  41. X. Chen, X. Liu, W. Liu, X. Zhang, Y. Zhang, and T. Mei, “Explainable person re-identification with attribute-guided metric distillation,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11 793–11 802, 2021.
  42. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255, 2009.
  43. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol. abs/1412.6980, 2015.
  44. X. Wang, G. Doretto, T. B. Sebastian, J. Rittscher, and P. H. Tu, “Shape and Appearance Context Modeling,” 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8, 2007.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Huy Nguyen (78 papers)
  2. Kien Nguyen (34 papers)
  3. Sridha Sridharan (106 papers)
  4. Clinton Fookes (148 papers)
Citations (5)
Github Logo Streamline Icon: https://streamlinehq.com