Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GPBiLQ and GPQMR: Two iterative methods for unsymmetric partitioned linear systems (2401.02608v1)

Published 5 Jan 2024 in math.NA and cs.NA

Abstract: We introduce two iterative methods, GPBiLQ and GPQMR, for solving unsymmetric partitioned linear systems. The basic mechanism underlying GPBiLQ and GPQMR is a novel simultaneous tridiagonalization via biorthogonality that allows for short-recurrence iterative schemes. Similar to the biconjugate gradient method, it is possible to develop another method, GPBiCG, whose iterate (if it exists) can be obtained inexpensively from the GPBiLQ iterate. Whereas the iterate of GPBiCG may not exist, the iterates of GPBiLQ and GPQMR are always well defined as long as the biorthogonal tridiagonal reduction process does not break down. We discuss connections between the proposed methods and some existing methods, and give numerical experiments to illustrate the performance of the proposed methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. M. Arioli. Generalized Golub–Kahan bidiagonalization and stopping criteria. SIAM J. Matrix Anal. Appl., 34(2):571–592, 2013.
  2. W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix eigenvalue problem. Quart. Appl. Math., 9:17–29, 1951.
  3. A tridiagonalization method for symmetric saddle-point systems. SIAM J. Sci. Comput., 41(5):S409–S432, 2019.
  4. E. J. Craig. The N𝑁Nitalic_N-step iteration procedures. J. Math. and Phys., 34:64–73, 1955.
  5. T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans. Math. Software, 38(1):Art. 1, 25, 2011.
  6. H. Elman and D. Silvester. Fast nonsymmetric iterations and preconditioning for Navier–Stokes equations. SIAM J. Sci. Comput., 17(1):33–46, 1996. Special issue on iterative methods in numerical linear algebra (Breckenridge, CO, 1994).
  7. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, second edition, 2014.
  8. R. Estrin and C. Greif. SPMR: A family of saddle-point minimum residual solvers. SIAM J. Sci. Comput., 40(3):A1884–A1914, 2018.
  9. R. Fletcher. Conjugate gradient methods for indefinite systems. In Numerical analysis (Proc. 6th Biennial Dundee Conf., Univ. Dundee, Dundee, 1975), Lecture Notes in Math., Vol. 506, pages 73–89. Springer, Berlin-New York, 1976.
  10. D. C.-L. Fong and M. Saunders. LSMR: An iterative algorithm for sparse least-squares problems. SIAM J. Sci. Comput., 33(5):2950–2971, 2011.
  11. R. W. Freund. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems. SIAM J. Sci. Comput., 14(2):470–482, 1993.
  12. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput., 14(1):137–158, 1993.
  13. R. W. Freund and M. Malhotra. A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides. In Proceedings of the Fifth Conference of the International Linear Algebra Society (Atlanta, GA, 1995), volume 254, pages 119–157, 1997.
  14. QMR: A quasi-minimal residual method for non-Hermitian linear systems. Numer. Math., 60(3):315–339, 1991.
  15. M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards, 49:409–436 (1953), 1952.
  16. C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Research Nat. Bur. Standards, 45:255–282, 1950.
  17. A. Montoison and D. Orban. BiLQ: An iterative method for nonsymmetric linear systems with a quasi-minimum error property. SIAM J. Matrix Anal. Appl., 41(3):1145–1166, 2020.
  18. A. Montoison and D. Orban. TriCG and TriMR: Two iterative methods for symmetric quasi-definite systems. SIAM J. Sci. Comput., 43(4):A2502–A2525, 2021.
  19. A. Montoison and D. Orban. GPMR: An iterative method for unsymmetric partitioned linear systems. SIAM J. Matrix Anal. Appl., 44(1):293–311, 2023.
  20. D. Orban and M. Arioli. Iterative solution of symmetric quasi-definite linear systems, volume 3 of SIAM Spotlights. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2017.
  21. C. C. Paige. Bidiagonalization of matrices and solutions of the linear equations. SIAM J. Numer. Anal., 11:197–209, 1974.
  22. Solutions of sparse indefinite systems of linear equations. SIAM J. Numer. Anal., 12(4):617–629, 1975.
  23. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software, 8(1):43–71, 1982.
  24. A look-ahead Lanczos algorithm for unsymmetric matrices. Math. Comp., 44(169):105–124, 1985.
  25. Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856–869, 1986.
  26. Two conjugate-gradient-type methods for unsymmetric linear equations. SIAM J. Numer. Anal., 25(4):927–940, 1988.
  27. P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 10(1):36–52, 1989.
  28. Numerical linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.
  29. H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 13(2):631–644, 1992.

Summary

We haven't generated a summary for this paper yet.