Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thermal transport of confined water molecules in quasi-one-dimensional nanotubes (2401.02595v2)

Published 5 Jan 2024 in cond-mat.soft, cond-mat.mes-hall, and physics.comp-ph

Abstract: Dimensions and molecular structure play pivotal roles in the principle of heat conduction. The dimensional characteristics of solution within nanoscale systems depend on the degrees of confinement. However, the influence of such variations on heat transfer remains inadequately understood. Here, we perform quasi-one-dimensional non-equilibrium molecular dynamics simulations to calculate the thermal conductivity of water molecules confined in carbon nanotubes. The structure of water molecules is determined depending on the nanotube radius, forming a single-file, a single-layer, and a double-layer structure, corresponding to an increasing radius order. We reveal that the thermal conductivity of liquid water has a sublinear dependency on nanotube length exclusively when water molecules form a single file. Stronger confinement leads to behavioral and structural characteristics closely resembling a one-dimensional nature. Moreover, single-layer-structured water molecules exhibit enhanced thermal conductivity. We elucidate that this is due to the increase in the local water density and the absence of transitions to another layer, which typically occurs in systems with double-layer water structures within relatively large radius nanotubes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. B. Li and J. Wang, Phys. Rev. Lett. 91, 044301 (2003).
  2. A. Dhar, Adv. Phys. 57, 457 (2008).
  3. H. Van Beijeren, Phys. Rev. Lett. 108, 180601 (2012).
  4. J. Quastel and H. Spohn, J. Stat. Phys. 160, 965 (2015).
  5. S.-N. Li and B.-Y. Cao, Energy Environ. 11, 40 (2020).
  6. T. Gueudré and P. Le Doussal, Europhys. Lett. 100, 26006 (2012).
  7. C. B. Mendl and H. Spohn, Phys. Rev. Lett. 111, 230601 (2013).
  8. J.-S. Wang and B. Li, Phys. Rev. Lett. 92, 074302 (2004).
  9. A. Henry and G. Chen, Phys. Rev. Lett. 101, 235502 (2008).
  10. R. Mohammad and G. Hojat, Theor. Comput. Fluid Dyn. 34, 177 (2020).
  11. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
  12. I. Hanasaki and A. Nakatani, J. Chem. Phys. 124 (2006).
  13. Y. Liu and Q. Wang, Phys. Rev. B 72, 085420 (2005).
  14. A. Cao and J. Qu, J. Appl. Phys. 112 (2012).
Citations (1)

Summary

We haven't generated a summary for this paper yet.