Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the order of Erdős-Rogers functions (2401.02548v2)

Published 4 Jan 2024 in math.CO

Abstract: For an integer $n \geq 1$, the Erd\H{o}s-Rogers function $f_{s}(n)$ is the maximum integer $m$ such that every $n$-vertex $K_{s+1}$-free graph has a $K_s$-free subgraph with $m$ vertices. It is known that for all $s \geq 3$, $f_{s}(n) = \Omega(\sqrt{n\log n}/\log \log n)$ as $n \rightarrow \infty$. In this paper, we show that for all $s \geq 3$, \begin{equation*} f_{s}(n) = O(\sqrt{n}\, \log n). \end{equation*} This improves previous bounds of order $\sqrt{n} (\log n){2(s + 1)2}$ by Dudek, Retter and R\"{o}dl.

Summary

We haven't generated a summary for this paper yet.