Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gravitational waves from dark domain walls (2401.02409v2)

Published 4 Jan 2024 in astro-ph.CO, gr-qc, and hep-th

Abstract: For most of cosmic history, the evolution of our Universe has been governed by the physics of a 'dark sector', consisting of dark matter and dark energy, whose properties are only understood in a schematic way. The influence of these constituents is mediated exclusively by the force of gravity, meaning that insight into their nature must be gleaned from gravitational phenomena. The advent of gravitational-wave astronomy has revolutionised the field of black hole astrophysics, and opens a new window of discovery for cosmological sources. Relevant examples include topological defects, such as domain walls or cosmic strings, which are remnants of a phase transition. Here we present the first simulations of cosmic structure formation in which the dynamics of the dark sector introduces domain walls as a source of stochastic gravitational waves in the late Universe. We study in detail how the spectrum of gravitational waves is affected by the properties of the model, and extrapolate the results to scales relevant to the recent evidence for a stochastic gravitational wave background. Our relativistic implementation of the field dynamics paves the way for optimal use of the next generation of gravitational experiments to unravel the dark sector.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. The LIGO Scientific Collaboration, The VIRGO Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 . arXiv:1602.03837 [astro-ph, physics:gr-qc] The LIGO Scientific Collaboration and The Virgo Collaboration 2017 The LIGO Scientific Collaboration, The Virgo Collaboration: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119(16), 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 . arXiv:1710.05832 [astro-ph, physics:gr-qc] Agazie et al. 2023 Agazie, G., et al.: The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophysical Journal Letters 951(1), 8 (2023) https://doi.org/10.3847/2041-8213/acdac6 arXiv:2306.16213 [astro-ph.HE] Vilenkin 1985 Vilenkin, A.: Cosmic strings and domain walls. Physics Reports 121(5), 263–315 (1985) https://doi.org/10.1016/0370-1573(85)90033-X Vachaspati 2022 Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 The LIGO Scientific Collaboration, The Virgo Collaboration: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119(16), 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 . arXiv:1710.05832 [astro-ph, physics:gr-qc] Agazie et al. 2023 Agazie, G., et al.: The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophysical Journal Letters 951(1), 8 (2023) https://doi.org/10.3847/2041-8213/acdac6 arXiv:2306.16213 [astro-ph.HE] Vilenkin 1985 Vilenkin, A.: Cosmic strings and domain walls. Physics Reports 121(5), 263–315 (1985) https://doi.org/10.1016/0370-1573(85)90033-X Vachaspati 2022 Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Agazie, G., et al.: The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophysical Journal Letters 951(1), 8 (2023) https://doi.org/10.3847/2041-8213/acdac6 arXiv:2306.16213 [astro-ph.HE] Vilenkin 1985 Vilenkin, A.: Cosmic strings and domain walls. Physics Reports 121(5), 263–315 (1985) https://doi.org/10.1016/0370-1573(85)90033-X Vachaspati 2022 Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Vilenkin, A.: Cosmic strings and domain walls. Physics Reports 121(5), 263–315 (1985) https://doi.org/10.1016/0370-1573(85)90033-X Vachaspati 2022 Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  2. The LIGO Scientific Collaboration, The Virgo Collaboration: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119(16), 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 . arXiv:1710.05832 [astro-ph, physics:gr-qc] Agazie et al. 2023 Agazie, G., et al.: The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophysical Journal Letters 951(1), 8 (2023) https://doi.org/10.3847/2041-8213/acdac6 arXiv:2306.16213 [astro-ph.HE] Vilenkin 1985 Vilenkin, A.: Cosmic strings and domain walls. Physics Reports 121(5), 263–315 (1985) https://doi.org/10.1016/0370-1573(85)90033-X Vachaspati 2022 Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Agazie, G., et al.: The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophysical Journal Letters 951(1), 8 (2023) https://doi.org/10.3847/2041-8213/acdac6 arXiv:2306.16213 [astro-ph.HE] Vilenkin 1985 Vilenkin, A.: Cosmic strings and domain walls. Physics Reports 121(5), 263–315 (1985) https://doi.org/10.1016/0370-1573(85)90033-X Vachaspati 2022 Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Vilenkin, A.: Cosmic strings and domain walls. Physics Reports 121(5), 263–315 (1985) https://doi.org/10.1016/0370-1573(85)90033-X Vachaspati 2022 Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  3. Agazie, G., et al.: The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophysical Journal Letters 951(1), 8 (2023) https://doi.org/10.3847/2041-8213/acdac6 arXiv:2306.16213 [astro-ph.HE] Vilenkin 1985 Vilenkin, A.: Cosmic strings and domain walls. Physics Reports 121(5), 263–315 (1985) https://doi.org/10.1016/0370-1573(85)90033-X Vachaspati 2022 Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Vilenkin, A.: Cosmic strings and domain walls. Physics Reports 121(5), 263–315 (1985) https://doi.org/10.1016/0370-1573(85)90033-X Vachaspati 2022 Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  4. Vilenkin, A.: Cosmic strings and domain walls. Physics Reports 121(5), 263–315 (1985) https://doi.org/10.1016/0370-1573(85)90033-X Vachaspati 2022 Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  5. Vachaspati, T.: Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009290456 Hinterbichler and Khoury 2010 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  6. Hinterbichler, K., Khoury, J.: Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Physical Review Letters 104(23), 231301 (2010) https://doi.org/10.1103/PhysRevLett.104.231301 . arXiv: 1001.4525 Hinterbichler et al. 2011 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  7. Hinterbichler, K., Khoury, J., Levy, A., Matas, A.: Symmetron cosmology. Physical Review D 84(10), 103521 (2011) https://doi.org/10.1103/PhysRevD.84.103521 Christiansen et al. 2024 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  8. Christiansen, Ø., Hassani, F., Mota, D.: asimulation: Domain formation and impact on observables in resolved cosmological simulations of the (a)symmetron (submitted) (2024) Christiansen et al. 2023 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  9. Christiansen, Ø., Hassani, F., Jalilvand, M., Mota, D.F.: asevolution: a relativistic N-body implementation of the (a)symmetron. Journal of Cosmology and Astroparticle Physics 2023(05), 009 (2023) https://doi.org/10.1088/1475-7516/2023/05/009 . Publisher: IOP Publishing Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  10. Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nature Physics 12(4), 346–349 (2016) https://doi.org/10.1038/nphys3673 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-01-25 DESI 2016 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  11. DESI: The DESI Experiment Part I: Science,Targeting, and Survey Design. Technical Report arXiv:1611.00036, arXiv (December 2016). https://doi.org/10.48550/arXiv.1611.00036 Weltman et al. 2020 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  12. Weltman, A., et al.: Fundamental Physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia 37, 002 (2020) https://doi.org/10.1017/pasa.2019.42 . arXiv: 1810.02680 Amaro-Seoane et al. 2017 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  13. Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. arXiv (2017) https://doi.org/10.48550/arXiv.1702.00786 . arXiv:1702.00786 [astro-ph] Branchesi et al. 2023 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  14. Branchesi, M., et al.: Science with the Einstein Telescope: a comparison of different designs. Journal of Cosmology and Astroparticle Physics 2023(07), 068 (2023) https://doi.org/10.1088/1475-7516/2023/07/068 . arXiv:2303.15923 [astro-ph, physics:gr-qc] Maiorano et al. 2021 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  15. Maiorano, M., De Paolis, F., Nucita, A.A.: Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 13(12), 2418 (2021) https://doi.org/10.3390/sym13122418 . arXiv:2112.08064 [astro-ph] Phinney 2001 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  16. Phinney, E.S.: A Practical Theorem on Gravitational Wave Backgrounds (2001) https://doi.org/10.48550/arXiv.astro-ph/0108028 NANOGrav 2023 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  17. NANOGrav: The NANOGrav 15-year Data Set: Search for Signals from New Physics (2023) https://doi.org/10.3847/2041-8213/acdc91 . arXiv:2306.16219 [astro-ph, physics:gr-qc, physics:hep-ph] Babichev et al. 2023 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  18. Babichev, E., Gorbunov, D., Ramazanov, S., Samanta, R., Vikman, A.: NANOGrav spectral index gamma = 3 from melting domain walls (2023) https://doi.org/10.48550/arXiv.2307.04582 . arXiv:2307.04582 [astro-ph, physics:hep-ph, physics:hep-th] Kibble 1976 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  19. Kibble, T.W.B.: Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General 9(8), 1387 (1976) https://doi.org/10.1088/0305-4470/9/8/029 Saikawa 2017 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  20. Saikawa, K.: A review of gravitational waves from cosmic domain walls. Universe 3(2), 40 (2017) https://doi.org/10.3390/universe3020040 arXiv:1703.02576 [hep-ph] Ramazanov et al. 2022 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  21. Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.: Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal. Physical Review D 105(6), 063530 (2022) https://doi.org/10.1103/PhysRevD.105.063530 . arXiv:2104.13722 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Gouttenoire and Vitagliano 2023 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  22. Gouttenoire, Y., Vitagliano, E.: Domain wall interpretation of the PTA signal confronting black hole overproduction (2023) https://doi.org/10.48550/arXiv.2306.17841 . arXiv:2306.17841 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] Blasi et al. 2023 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  23. Blasi, S., Mariotti, A., Rase, A., Sevrin, A.: Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction (2023) https://doi.org/10.48550/arXiv.2306.17830 . arXiv:2306.17830 [astro-ph, physics:hep-ph] Li 2023 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  24. Li, X.-F.: Probing the high temperature symmetry breaking with gravitational waves from domain walls (2023) https://doi.org/10.48550/arXiv.2307.03163 . arXiv:2307.03163 [astro-ph, physics:hep-ph] Perivolaropoulos and Skara 2022 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  25. Perivolaropoulos, L., Skara, F.: Gravitational transitions via the explicitly broken symmetron screening mechanism. Physical Review D 106(4), 043528 (2022) https://doi.org/10.1103/PhysRevD.106.043528 . Publisher: American Physical Society Adamek et al. 2016 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  26. Adamek, J., Daverio, D., Durrer, R., Kunz, M.: gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics 2016(07), 053–053 (2016) https://doi.org/10.1088/1475-7516/2016/07/053 . arXiv: 1604.06065 Allen and Romano 1999 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117 Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
  27. Allen, B., Romano, J.D.: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D 59(10), 102001 (1999) https://doi.org/10.1103/PhysRevD.59.102001 . arXiv:gr-qc/9710117
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com