Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix product state ansatz for the variational quantum solution of the Heisenberg model on Kagome geometries (2401.02355v1)

Published 4 Jan 2024 in quant-ph and cond-mat.str-el

Abstract: The Variational Quantum Eigensolver (VQE) algorithm, as applied to finding the ground state of a Hamiltonian, is particularly well-suited for deployment on noisy intermediate-scale quantum (NISQ) devices. Here we utilize the VQE algorithm with a quantum circuit ansatz inspired by the Density Matrix Renormalization Group (DMRG) algorithm. To ameliorate the impact of realistic noise on the performance of the method we employ zero-noise extrapolation. We find that, with realistic error rates, our DMRG-VQE hybrid algorithm delivers good results for strongly correlated systems. We illustrate our approach with the Heisenberg model on a Kagome lattice patch and demonstrate that DMRG-VQE hybrid methods can locate, and faithfully represent the physics of, the ground state of such systems. Moreover, the parameterized ansatz circuit used in this work is low-depth and requires a reasonably small number of parameters, so is efficient for NISQ devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. C. Zalka, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 313 (1998).
  2. G. H. Low, Y. Su, Y. Tong,  and M. C. Tran, “On the complexity of implementing Trotter steps,”  (2022), arXiv:2211.09133 [cond-mat, physics:physics, physics:quant-ph] .
  3. G. H. Low and I. L. Chuang, Quantum 3, 163 (2019), arXiv:1610.06546 [quant-ph] .
  4. G. H. Low and I. L. Chuang, Physical Review Letters 118, 010501 (2017), arXiv:1606.02685 [quant-ph] .
  5. A. M. Childs and N. Wiebe, Quantum Information and Computation 12, 10.26421/QIC12.11-12, arXiv:1202.5822 [quant-ph] .
  6. E. Campbell, Physical Review Letters 123, 070503 (2019), arXiv:1811.08017 [quant-ph] .
  7. J. Preskill, Quantum 2, 79 (2018), arxiv:1801.00862 .
  8. Y. Li and S. C. Benjamin, Phys. Rev. X 7, 021050 (2017).
  9. J. C. Bridgeman and C. T. Chubb, Journal of Physics A: Mathematical and Theoretical 50, 223001 (2017).
  10. J. Huang, W. He, Y. Zhang, Y. Wu, B. Wu,  and X. Yuan, “Tensor Network Assisted Variational Quantum Algorithm,”  (2022), arXiv:2212.10421.
  11. A. Khan, B. K. Clark,  and N. M. Tubman, “Pre-optimizing variational quantum eigensolvers with tensor networks,”  (2023), 2310.12965 [cond-mat, physics:quant-ph] .
  12. S. Shin, Y. S. Teo,  and H. Jeong, “Analyzing quantum machine learning using tensor network,”  (2023), 2307.06937 [quant-ph] .
  13. Y. Fan, J. Liu, Z. Li,  and J. Yang, “Quantum circuit matrix product state ansatz for large-scale simulations of molecules,”  (2023), 2301.06376 [physics, physics:quant-ph] .
  14. “IBM Quantum Awards: Open Science Prize 2022,” Qiskit Community (2023), https://github.com/qiskit-community/open-science-prize-2022/tree/main.
  15. J. Kattemölle and J. van Wezel, Phys. Rev. B 106, 214429 (2022).
  16. J. S, K. A, D. M. M, S. Vishwakarma, S. Ganguly,  and Y. P, “Efficient vqe approach for accurate simulations on the kagome lattice,”  (2023), arXiv:2306.00467 [quant-ph] .
  17. L. Balents, Nature 464, 199 (2010).
  18. U. Schollwöck, Rev. Modern Phys. 77, 259 (2005).
  19. U. Schollwöck, Ann. Phys. 326, 96 (2011).
  20. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
  21. F. Verstraete and J. I. Cirac, prb 73, 094423 (2006).
  22. M. B. Hastings, J. Stat. Mech. , P08024 (2007).
  23. MindQuantum, “Mindquantum,” .
  24. S.-J. Ran, Phys. Rev. A 101, 032310 (2020).
  25. M. S. Rudolph, J. Chen, J. Miller, A. Acharya,  and A. Perdomo-Ortiz, “Decomposition of matrix product states into shallow quantum circuits,”  (2022), arXiv:2209.00595 [quant-ph] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com