Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Agent Context Learning Strategy for Interference-Aware Beam Allocation in mmWave Vehicular Communications (2401.02323v1)

Published 4 Jan 2024 in eess.SP and cs.LG

Abstract: Millimeter wave (mmWave) has been recognized as one of key technologies for 5G and beyond networks due to its potential to enhance channel bandwidth and network capacity. The use of mmWave for various applications including vehicular communications has been extensively discussed. However, applying mmWave to vehicular communications faces challenges of high mobility nodes and narrow coverage along the mmWave beams. Due to high mobility in dense networks, overlapping beams can cause strong interference which leads to performance degradation. As a remedy, beam switching capability in mmWave can be utilized. Then, frequent beam switching and cell change become inevitable to manage interference, which increase computational and signalling complexity. In order to deal with the complexity in interference control, we develop a new strategy called Multi-Agent Context Learning (MACOL), which utilizes Contextual Bandit to manage interference while allocating mmWave beams to serve vehicles in the network. Our approach demonstrates that by leveraging knowledge of neighbouring beam status, the machine learning agent can identify and avoid potential interfering transmissions to other ongoing transmissions. Furthermore, we show that even under heavy traffic loads, our proposed MACOL strategy is able to maintain low interference levels at around 10%.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. C. Suthaputchakun, Z. Sun, and M. Dianati, “Applications of vehicular communications for reducing fuel consumption and CO2 emission: The state of the art and research challenges,” IEEE Communications Magazine, vol. 50, no. 12, Dec. 2012.
  2. 5G Americas, “Cellular V2X Communications Towards 5G,” White paper, Mar. 2018.
  3. D. Parekh, N. Poddar, A. Rajpurkar, M. Chahal, N. Kumar, G. P. Joshi, and W. Cho, “A review on autonomous vehicles: Progress, methods and challenges,” Electronics, vol. 11, no. 14, p. 2162, 2022.
  4. H. Bagheri, M. Noor-A-Rahim, Z. Liu, H. Lee, D. Pesch, K. Moessner, and P. Xiao, “5G NR-V2X: Toward connected and cooperative autonomous driving,” IEEE Communications Standards Magazine, vol. 5, no. 1, pp. 48–54, 2021.
  5. S. Fu, W. Zhang, and Z. Jiang, “A network-level connected autonomous driving evaluation platform implementing c-v2x technology,” China Communications, vol. 18, no. 6, pp. 77–88, 2021.
  6. I. Rasheed, F. Hu, Y.-K. Hong, and B. Balasubramanian, “Intelligent vehicle network routing with adaptive 3D beam alignment for mmWave 5G-based V2X communications,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 5, pp. 2706–2718, 2020.
  7. K. Sakaguchi, R. Fukatsu, T. Yu, E. Fukuda, K. Mahler, R. Heath, T. Fujii, K. Takahashi, A. Khoryaev, S. Nagata et al., “Towards mmwave v2x in 5g and beyond to support automated driving,” IEICE Transactions on Communications, vol. 104, no. 6, pp. 587–603, 2021.
  8. S. Lee, Y. Jung, Y.-H. Park, and S.-W. Kim, “Design of V2X-based vehicular contents centric networks for autonomous driving,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 13 526–13 537, 2021.
  9. F. Bouali, J. Pinola, V. Karyotis, B. Wissingh, M. Mitrou, P. Krishnan, and K. Moessner, “5G for Vehicular Use Cases: Analysis of Technical Requirements, Value Propositions and Outlook,” IEEE Open Journal of Intelligent Transportation Systems, vol. 2, pp. 73–96, 2021.
  10. H. Cao, S. Gangakhedkar, A. R. Ali, M. Gharba, and J. Eichinger, “A testbed for experimenting 5G-V2X requiring ultra reliability and low-latency,” in WSA 2017; 21th international ITG workshop on smart antennas.   VDE, 2017, pp. 1–4.
  11. K. SAKAGUCHI, R. FUKATSU, T. YU, E. FUKUDA, K. MAHLER, R. HEATH, T. FUJII, K. TAKAHASHI, A. KHORYAEV, S. NAGATA, and T. SHIMIZU, “Towards mmWave V2X in 5G and Beyond to Support Automated Driving,” IEICE Transactions on Communications, vol. E104.B, no. 6, pp. 587–603, 2021.
  12. 3GPP TR 26.985, “Vehicle-to-everything (V2X); Media handling and interaction,” Tech. Rep., 17.0.0, 2022.
  13. M. Noor-A-Rahim, Z. Liu, H. Lee, G. G. M. N. Ali, D. Pesch, and P. Xiao, “A Survey on Resource Allocation in Vehicular Networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 2, pp. 701–721, 2022.
  14. H. Bagheri, M. Noor-A-Rahim, Z. Liu, H. Lee, D. Pesch, K. Moessner, and P. Xiao, “5G NR-V2X: Toward Connected and Cooperative Autonomous Driving,” IEEE Communications Standards Magazine, vol. 5, no. 1, pp. 48–54, Mar. 2021.
  15. L. Zhao, X. Li, B. Gu, Z. Zhou, S. Mumtaz, V. Frascolla, H. Gacanin, M. I. Ashraf, J. Rodriguez, M. Yang et al., “Vehicular communications: standardization and open issues,” IEEE Communications Standards Magazine, vol. 2, no. 4, pp. 74–80, Dec. 2018.
  16. A. Kose, C. H. Foh, H. Lee, and M. Dianati, “Beam-centric Handover Decision in Dense 5G-mmWave Networks,” in IEEE Int’l Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Sept. 2020.
  17. A. Kose, H. Lee, C. H. Foh, and M. Dianati, “Beam-Based Mobility Management in 5G Millimetre Wave V2X Communications: A Survey and Outlook,” IEEE Open Journal of Intelligent Transportation Systems, vol. 2, pp. 347–363, 2021.
  18. N. Hassanpour, J. E. Smee, J. Hou, and J. B. Soriaga, “Distributed Beamforming Based on Signal-to Caused-Interference Ratio,” in IEEE 10th Int’l Symposium on Spread Spectrum Techniques and Applications (ISSST), Aug. 2008.
  19. H. B. Salameh and F. H. Tha’er, “Efficient beamforming in multi-cell multi-antenna networks: Exploiting network duality,” in IEEE Wireless Communications and Networking Conference (WCNC), Apr. 2016.
  20. J. Yoon, Y. Kim, H. S. Jang, and B. C. Jung, “Downlink interference alignment with multi-user and multi-beam diversity for fog RANs,” in IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Sep. 2019.
  21. J. Deng, O. Tirkkonen, R. Freij-Hollanti, T. Chen, and N. Nikaein, “Resource allocation and interference management for opportunistic relaying in integrated mmWave/sub-6 GHz 5G networks,” IEEE Communications Magazine, vol. 55, no. 6, pp. 94–101, June 2017.
  22. K. Hoshino and T. Fujii, “A Study on Optimal Beam Selection Algorithm for Multi-cell Coordinated Beamforming,” in IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), April 2021.
  23. M. Elsayed, K. Shimotakahara, and M. Erol-Kantarci, “Machine learning-based inter-beam inter-cell interference mitigation in mmWave,” in IEEE International Conference on Communications (ICC), June 2020.
  24. J. Wang, J. Weitzen, O. Bayat, V. Sevindik, and M. Li, “Interference coordination for millimeter wave communications in 5G networks for performance optimization,” EURASIP Journal on Wireless Communications and Networking, vol. 2019, no. 46, Feb. 2019.
  25. M. S. J. Solaija, H. Salman, A. B. Kihero, M. İ. Sağlam, and H. Arslan, “Generalized coordinated multipoint framework for 5G and beyond,” IEEE Access, vol. 9, pp. 72 499–72 515, May 2021.
  26. F. Irram, M. Ali, Z. Maqbool, F. Qamar, and J. J. Rodrigues, “Coordinated Multi-Point Transmission in 5G and Beyond Heterogeneous Networks,” in IEEE 23rd International Multitopic Conference (INMIC), Nov. 2020.
  27. T. B. de Oliveira, A. L. Bazzan, B. C. da Silva, and R. Grunitzki, “Comparing multi-armed bandit algorithms and Q-learning for multiagent action selection: a case study in route choice,” in International Joint Conference on Neural Networks (IJCNN), July 2018.
  28. Z. Zhang and H. Yu, “Beam interference suppression in multi-cell millimeter wave communications,” Digital Communications and Networks, vol. 5, no. 3, pp. 196–202, Aug. 2019.
  29. M. E. Morocho-Cayamcela, H. Lee, and W. Lim, “Machine Learning for 5G/B5G Mobile and Wireless Communications: Potential, Limitations, and Future Directions,” IEEE Access, vol. 7, pp. 137 184–137 206, Sep. 2019.
  30. K. Ma, Z. Wang, W. Tian, S. Chen, and L. Hanzo, “Deep Learning for Beam-Management: State-of-the-Art, Opportunities and Challenges,” 2021. [Online]. Available: https://arxiv.org/abs/2111.11177
  31. Y. Yang, Z. Gao, Y. Ma, B. Cao, and D. He, “Machine Learning Enabling Analog Beam Selection for Concurrent Transmissions in Millimeter-Wave V2V Communications,” IEEE Transactions on Vehicular Technology, vol. 69, no. 8, pp. 9185–9189, June 2020.
  32. Y. Long, Z. Chen, J. Fang, and C. Tellambura, “Data-Driven-Based Analog Beam Selection for Hybrid Beamforming Under mm-Wave Channels,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 2, pp. 340–352, May 2018.
  33. S.-L. Ju, N.-i. Kim, and K.-S. Kim, “Machine-Learning-Based User Group and Beam Selection for Coordinated Millimeter-wave Systems,” International journal of advanced smart convergence, vol. 9, no. 4, pp. 2288–2847, Dec. 2020.
  34. M. Noor-A-Rahim, Z. Liu, H. Lee, M. O. Khyam, J. He, D. Pesch, K. Moessner, W. Saad, and H. V. Poor, “6G for Vehicle-to-Everything (V2X) Communications: Enabling Technologies, Challenges, and Opportunities,” Proceedings of the IEEE, pp. 1–23, May 2022.
  35. G. H. Sim, S. Klos, A. Asadi, A. Klein, and M. Hollick, “An Online Context-Aware Machine Learning Algorithm for 5G mmWave Vehicular Communications,” IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp. 2487–2500, Dec. 2018.
  36. D. Li, S. Wang, H. Zhao, and X. Wang, “Context-and-Social-Aware Online Beam Selection for mmWave Vehicular Communications,” IEEE Internet of Things Journal, vol. 8, no. 10, pp. 8603–8615, May 2021.
  37. A. Kose, C. H. Foh, H. Lee, and K. Moessner, “Profiling Vehicles for Improved Small Cell Beam-Vehicle Pairing Using Multi-Armed Bandit,” in IEEE Int’l Conference on Information and Communication Technology Convergence (ICTC), Oct. 2021.
  38. A. Tassi, M. Egan, R. J. Piechocki, and A. Nix, “Modeling and design of millimeter-wave networks for highway vehicular communication.” [Online]. Available: http://arxiv.org/pdf/1706.00298v5
  39. M. Giordani, M. Rebato, A. Zanella, and M. Zorzi, “Coverage and connectivity analysis of millimeter wave vehicular networks,” Ad Hoc Networks, vol. 80, pp. 158–171, 2018.
  40. O. Semiari, W. Saad, M. Bennis, and B. Maham, “Caching Meets Millimeter Wave Communications for Enhanced Mobility Management in 5G Networks,” IEEE Transactions on Wireless Communications, vol. 17, no. 2, pp. 779–793, 2018.
  41. L. Li, C. Zheng, and H. Liu, “Handover performance in 5G HetNets with millimeter wave cells,” in 2016 16th Int’l Symposium on Communications and Information Technologies (ISCIT), 2016, pp. 11–16.
  42. C. Tatino, I. Malanchini, D. Aziz, and D. Yuan, “Beam based stochastic model of the coverage probability in 5G millimeter wave systems,” in 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt).   IEEE, 2017, pp. 1–6.
  43. S. Shu Sun, T. S. Rappaport, T. A. Thomas, A. Ghosh, H. C. Nguyen, I. Z. Kovács, I. Rodriguez, O. Koymen, and A. Partyka, “Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications,” IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 2843–2860, 2016.
  44. M. Boban, A. Kousaridas, K. Manolakis, J. Eichinger, and W. Xu, “Use cases, requirements, and design considerations for 5G V2X,” arXiv preprint arXiv:1712.01754, 2017.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets