Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-conforming FEM for the quasi-static contact problem (2401.02170v1)

Published 4 Jan 2024 in math.NA and cs.NA

Abstract: In this article, we addressed the numerical solution of a non-linear evolutionary variational inequality, which is encountered in the investigation of quasi-static contact problems. Our study encompasses both the semi-discrete and fully-discrete schemes, where we employ the backward Euler method for time discretization and utilize the lowest order Crouzeix-Raviart nonconforming finite element method for spatial discretization. By assuming appropriate regularity conditions on the solution, we establish \emph{a priori} error analysis for these schemes, achieving the optimal convergence order for linear elements. To illustrate the numerical convergence rates, we provide numerical results on a two-dimensional test problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. M. Cocou. A variational inequality and applications to quasistatic problems with Coulomb friction. Applicable Analysis, 97(8):1357–1371, 2018.
  2. A. Capatina. Existence and Uniqueness Results. Variational Inequalities and Frictional Contact Problems, 3:31–82, 2014.
  3. M. Sofonea and A. Matei. Variational inequalities with applications: a study of antiplane frictional contact problems, volume 18. Springer Science & Business Media, 2009.
  4. Models and analysis of quasistatic contact: variational methods, volume 655. Springer Science & Business Media, 2004.
  5. N. Kikuchi and J. T. Oden. Contact Problems in Elasticity (SIAM, Philadelphia, PA). 1988.
  6. G. Duvaut and J. L. Lions. Inequalities in Mechanics and Physics. Springer Science & Business Media, 2008.
  7. W. Han and M. Sofonea. Quasistatic contact problems in viscoelasticity and viscoplasticity. Number 30. American Mathematical Soc., 2002.
  8. L. E. Andersson. A quasistatic frictional problem with normal compliance. Nonlinear Analysis: Theory, Methods & Applications, 16(4):347–369, 1991.
  9. Frictional contact problems with normal compliance. International Journal of Engineering Science, 26(8):811–832, 1988.
  10. On friction problems with normal compliance. Nonlinear Analysis, 13(8):935–955, 1989.
  11. Formulation and approximation of quasistatic frictional contact. International Journal of Engineering Science, 34(7):783–798, 1996.
  12. P. Alart and A. Curnier. A mixed formulation for frictional contact problems prone to Newton like solution methods. Computer Methods in Applied Mechanics and Engineering, 92(3):353–375, 1991.
  13. L. E. Andersson and A. Klarbring. A review of the theory of static and quasi-static frictional contact problems in elasticity. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359(1789):2519–2539, 2001.
  14. M. Cocu. Existence of solutions of Signorini problems with friction. International Journal of Engineering Science, 22(5):567–575, 1984.
  15. L. E. Andersson. Existence results for quasistatic contact problems with Coulomb friction. Applied Mathematics and Optimization, 42:169–202, 2000.
  16. R. Rocca. Existence of a solution for a quasistatic problem of unilateral contact with local friction. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 328(12):1253–1258, 1999.
  17. R. Rocca and M. Cocu. Existence and approximation of a solution to quasistatic Signorini problem with local friction. International Journal of Engineering Science, 39(11):1233–1255, 2001.
  18. J. R. Fernández and P. Hild. A priori and a posteriori error analyses in the study of viscoelastic problems. Journal of Computational and Applied Mathematics, 225(2):569–580, 2009.
  19. Numerical analysis of a bilateral frictional contact problem for linearly elastic materials. IMA Journal of Numerical Analysis, 22(3):407–436, 2002.
  20. A discontinuous Galerkin formulation for classical and gradient plasticity–Part 1: Formulation and analysis. Computer Methods in Applied Mechanics and Engineering, 196(37-40):3881–3897, 2007.
  21. A discontinuous Galerkin formulation for classical and gradient plasticity. Part 2: Algorithms and numerical analysis. Computer Methods in Applied Mechanics and Engineering, 197(1-4):1–21, 2007.
  22. Discontinuous Galerkin methods for solving a quasistatic contact problem. Numerische Mathematik, 126(4):771–800, 2014.
  23. L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Mathematics of Computation, 54(190):483–493, 1990.
  24. P. G. Ciarlet. The finite element method for elliptic problems. SIAM, 2002.
  25. C. Carstensen and K. Köhler. Nonconforming FEM for the obstacle problem. IMA Journal of Numerical Analysis, 37(1):64–93, 2017.
  26. P. Hansbo and M. G. Larson. Discontinuous Galerkin and the Crouzeix–Raviart element: application to elasticity. ESAIM: Mathematical Modelling and Numerical Analysis, 37(1):63–72, 2003.
  27. S. Kesavan. Topics in functional analysis and applications. New Age International, 1989.
  28. R. Glowinski. Lectures on numerical methods for non-linear variational problems. Springer Science & Business Media, 2008.

Summary

We haven't generated a summary for this paper yet.