Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Marginal Debiased Network for Fair Visual Recognition (2401.02150v2)

Published 4 Jan 2024 in cs.CV

Abstract: Deep neural networks (DNNs) are often prone to learn the spurious correlations between target classes and bias attributes, like gender and race, inherent in a major portion of training data (bias-aligned samples), thus showing unfair behavior and arising controversy in the modern pluralistic and egalitarian society. In this paper, we propose a novel marginal debiased network (MDN) to learn debiased representations. More specifically, a marginal softmax loss (MSL) is designed by introducing the idea of margin penalty into the fairness problem, which assigns a larger margin for bias-conflicting samples (data without spurious correlations) than for bias-aligned ones, so as to deemphasize the spurious correlations and improve generalization on unbiased test criteria. To determine the margins, our MDN is optimized through a meta learning framework. We propose a meta equalized loss (MEL) to perceive the model fairness, and adaptively update the margin parameters by meta-optimization which requires the trained model guided by the optimal margins should minimize MEL computed on an unbiased meta-validation set. Extensive experiments on BiasedMNIST, Corrupted CIFAR-10, CelebA and UTK-Face datasets demonstrate that our MDN can achieve a remarkable performance on under-represented samples and obtain superior debiased results against the previous approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  2. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.
  3. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proceedings of International Conference on Learning Representations, 2014, pp. 1–14.
  4. J. Buolamwini and T. Gebru, “Gender shades: Intersectional accuracy disparities in commercial gender classification,” in Proceedings of the Conference on fairness, accountability and transparency.   PMLR, 2018, pp. 77–91.
  5. M. Wang, Y. Zhang, and W. Deng, “Meta balanced network for fair face recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 11, pp. 8433–8448, 2021.
  6. S. Gong, X. Liu, and A. K. Jain, “Jointly de-biasing face recognition and demographic attribute estimation,” in Proceedings of the European Conference on Computer Vision.   Springer, 2020, pp. 330–347.
  7. X. Xu, Y. Huang, P. Shen, S. Li, J. Li, F. Huang, Y. Li, and Z. Cui, “Consistent instance false positive improves fairness in face recognition,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 578–586.
  8. J. Angwin, J. Larson, S. Mattu, and L. Kirchner, “Machine bias,” in Ethics of data and analytics.   Auerbach Publications, 2016, pp. 254–264.
  9. A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.   IEEE, 2011, pp. 1521–1528.
  10. J. Nam, H. Cha, S. Ahn, J. Lee, and J. Shin, “Learning from failure: De-biasing classifier from biased classifier,” Advances in Neural Information Processing Systems, vol. 33, pp. 20 673–20 684, 2020.
  11. E. Z. Liu, B. Haghgoo, A. S. Chen, A. Raghunathan, P. W. Koh, S. Sagawa, P. Liang, and C. Finn, “Just train twice: Improving group robustness without training group information,” in International Conference on Machine Learning.   PMLR, 2021, pp. 6781–6792.
  12. Y. Li and N. Vasconcelos, “Repair: Removing representation bias by dataset resampling,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 9572–9581.
  13. E. Kim, J. Lee, and J. Choo, “Biaswap: Removing dataset bias with bias-tailored swapping augmentation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 14 992–15 001.
  14. V. V. Ramaswamy, S. S. Kim, and O. Russakovsky, “Fair attribute classification through latent space de-biasing,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 9301–9310.
  15. W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax loss for convolutional neural networks,” in International Conference on Machine Learning.   PMLR, 2016, pp. 507–516.
  16. Y. Guo and C. Zhang, “Recent advances in large margin learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 7167–7174, 2022.
  17. K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, “Learning imbalanced datasets with label-distribution-aware margin loss,” Advances in neural information processing systems, vol. 32, 2019.
  18. J. Ren, C. Yu, X. Ma, H. Zhao, S. Yi et al., “Balanced meta-softmax for long-tailed visual recognition,” Advances in neural information processing systems, vol. 33, pp. 4175–4186, 2020.
  19. S. Ahn, S. Kim, and S.-y. Yun, “Mitigating dataset bias by using per-sample gradient,” in Proceedings of International Conference on Learning Representations, 2023, pp. 1–14.
  20. B. Kim, H. Kim, K. Kim, S. Kim, and J. Kim, “Learning not to learn: Training deep neural networks with biased data,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9012–9020.
  21. E. Tartaglione, C. A. Barbano, and M. Grangetto, “End: Entangling and disentangling deep representations for bias correction,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 13 508–13 517.
  22. Y. Zhang, J. Sang, J. Wang, D. Jiang, and Y. Wang, “Benign shortcut for debiasing: Fair visual recognition via intervention with shortcut features,” in Proceedings of the 31st ACM International Conference on Multimedia, 2023, pp. 8860–8868.
  23. C. A. Barbano, B. Dufumier, E. Tartaglione, M. Grangetto, and P. Gori, “Unbiased supervised contrastive learning,” in Proceedings of International Conference on Learning Representations, 2023, pp. 1–13.
  24. J. A. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,” Neural processing letters, vol. 9, pp. 293–300, 1999.
  25. W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep hypersphere embedding for face recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 212–220.
  26. J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep face recognition,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 4690–4699.
  27. J. He and D. Xu, “Large margin nearest neighbor classification with privileged information for biometric applications,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 12, pp. 4567–4577, 2020.
  28. G. F. Elsayed, D. Krishnan, H. Mobahi, K. Regan, and S. Bengio, “Large margin deep networks for classification,” in Proceedings of International Conference on Neural Information Processing Systems, 2018, pp. 850–860.
  29. H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu, “Cosface: Large margin cosine loss for deep face recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 5265–5274.
  30. H. Liu, X. Zhu, Z. Lei, and S. Z. Li, “Adaptiveface: Adaptive margin and sampling for face recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11 947–11 956.
  31. M. Kim, A. K. Jain, and X. Liu, “Adaface: Quality adaptive margin for face recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 18 750–18 759.
  32. D. Zhong and J. Zhu, “Centralized large margin cosine loss for open-set deep palmprint recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 6, pp. 1559–1568, 2020.
  33. W. Xie, H. Wu, Y. Tian, M. Bai, and L. Shen, “Triplet loss with multistage outlier suppression and class-pair margins for facial expression recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 2, pp. 690–703, 2022.
  34. T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning in neural networks: A survey,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 9, pp. 5149–5169, 2021.
  35. T. Elsken, B. Staffler, J. H. Metzen, and F. Hutter, “Meta-learning of neural architectures for few-shot learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 12 365–12 375.
  36. B. Zhang, H. Jiang, X. Li, S. Feng, Y. Ye, C. Luo, and R. Ye, “Metadt: Meta decision tree with class hierarchy for interpretable few-shot learning,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 33, no. 6, pp. 2826–2838, 2023.
  37. D. Li, Y. Yang, Y.-Z. Song, and T. Hospedales, “Learning to generalize: Meta-learning for domain generalization,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.
  38. Y. Shu, Z. Cao, C. Wang, J. Wang, and M. Long, “Open domain generalization with domain-augmented meta-learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 9624–9633.
  39. J. Li, Y. Wong, Q. Zhao, and M. S. Kankanhalli, “Learning to learn from noisy labeled data,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 5051–5059.
  40. G. Zheng, A. H. Awadallah, and S. Dumais, “Meta label correction for noisy label learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 12, 2021, pp. 11 053–11 061.
  41. C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in International conference on machine learning.   PMLR, 2017, pp. 1126–1135.
  42. A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algorithms,” arXiv preprint arXiv:1803.02999, 2018.
  43. J. Zhang, J. Song, L. Gao, Y. Liu, and H. T. Shen, “Progressive meta-learning with curriculum,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 9, pp. 5916–5930, 2022.
  44. Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele, “Meta-transfer learning for few-shot learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 403–412.
  45. M.-H. Bui, T. Tran, A. Tran, and D. Phung, “Exploiting domain-specific features to enhance domain generalization,” Advances in Neural Information Processing Systems, vol. 34, pp. 21 189–21 201, 2021.
  46. J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng, “Meta-weight-net: Learning an explicit mapping for sample weighting,” Advances in neural information processing systems, vol. 32, 2019.
  47. R. Wang, X. Jia, Q. Wang, Y. Wu, and D. Meng, “Imbalanced semi-supervised learning with bias adaptive classifier,” in Proceedings of International Conference on Learning Representations, 2022, pp. 1–13.
  48. H. Bahng, S. Chun, S. Yun, J. Choo, and S. J. Oh, “Learning de-biased representations with biased representations,” in Proceedings of International Conference on Machine Learning.   PMLR, 2020, pp. 528–539.
  49. D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to common corruptions and perturbations,” in Proceedings of International Conference on Learning Representations, 2019, pp. 1–16.
  50. Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 3730–3738.
  51. Z. Zhang, Y. Song, and H. Qi, “Age progression/regression by conditional adversarial autoencoder,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 5810–5818.
  52. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  53. A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009.
  54. S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang, “Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization,” in Proceedings of International Conference on Learning Representations, 2020, pp. 1–19.
  55. Z. Wang, K. Qinami, I. C. Karakozis, K. Genova, P. Nair, K. Hata, and O. Russakovsky, “Towards fairness in visual recognition: Effective strategies for bias mitigation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 8919–8928.
  56. H. Wang, E. P. Xing, Z. He, and Z. C. Lipton, “Learning robust representations by projecting superficial statistics out,” in Proceedings of International Conference on Learning Representations, 2019, pp. 1–16.
  57. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,” International journal of computer vision, vol. 115, pp. 211–252, 2015.
  58. N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on bias and fairness in machine learning,” ACM computing surveys (CSUR), vol. 54, no. 6, pp. 1–35, 2021.
  59. B. Y. Idrissi, M. Arjovsky, M. Pezeshki, and D. Lopez-Paz, “Simple data balancing achieves competitive worst-group-accuracy,” in Proceedings of the First Conference on Causal Learning and Reasoning.   PMLR, 2022, pp. 336–351.
  60. L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning research, vol. 9, pp. 2579–2605, 2008.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mei Wang (41 papers)
  2. Weihong Deng (71 papers)
  3. Sen Su (25 papers)
  4. Jiani Hu (13 papers)

Summary

We haven't generated a summary for this paper yet.