Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MULTI-CASE: A Transformer-based Ethics-aware Multimodal Investigative Intelligence Framework (2401.01955v1)

Published 3 Jan 2024 in cs.HC and cs.MM

Abstract: AI-driven models are increasingly deployed in operational analytics solutions, for instance, in investigative journalism or the intelligence community. Current approaches face two primary challenges: ethical and privacy concerns, as well as difficulties in efficiently combining heterogeneous data sources for multimodal analytics. To tackle the challenge of multimodal analytics, we present MULTI-CASE, a holistic visual analytics framework tailored towards ethics-aware and multimodal intelligence exploration, designed in collaboration with domain experts. It leverages an equal joint agency between human and AI to explore and assess heterogeneous information spaces, checking and balancing automation through Visual Analytics. MULTI-CASE operates on a fully-integrated data model and features type-specific analysis with multiple linked components, including a combined search, annotated text view, and graph-based analysis. Parts of the underlying entity detection are based on a RoBERTa-based LLM, which we tailored towards user requirements through fine-tuning. An overarching knowledge exploration graph combines all information streams, provides in-situ explanations, transparent source attribution, and facilitates effective exploration. To assess our approach, we conducted a comprehensive set of evaluations: We benchmarked the underlying LLM on relevant NER tasks, achieving state-of-the-art performance. The demonstrator was assessed according to intelligence capability assessments, while the methodology was evaluated according to ethics design guidelines. As a case study, we present our framework in an investigative journalism setting, supporting war crime investigations. Finally, we conduct a formative user evaluation with domain experts in law enforcement. Our evaluations confirm that our framework facilitates human agency and steering in security-sensitive applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (69)
  1. J. Bullock, M. M. Young, and Y.-F. Wang, “Artificial Intelligence, Bureaucratic Form, and Discretion in Public Service,” Information Polity, vol. 25, no. 4, pp. 491–506, 2020.
  2. B. Ganor, “Artificial or Human: A New Era of Counterterrorism Intelligence?” Studies in Conflict & Terrorism, vol. 44, no. 7, pp. 605–624, 2021.
  3. M. Broussard, N. Diakopoulos, A. L. Guzman, R. Abebe, M. Dupagne, and C.-H. Chuan, “Artificial Intelligence and Journalism,” Journalism & Mass Communication Quarterly, vol. 96, no. 3, pp. 673–695, 2019.
  4. J. Stray, “Making Artificial Intelligence Work for Investigative Journalism,” Digital Journalism, vol. 7, no. 8, pp. 1076–1097, 2019.
  5. K. J. Hayward and M. M. Maas, “Artificial Intelligence and Crime: A Primer for Criminologists,” Crime, Media, Culture: An International Journal, vol. 17, no. 2, pp. 209–233, 2021.
  6. A. S. Obendiek and T. Seidl, “The (False) Promise of Solutionism: Ideational Business Power and the Construction of Epistemic Authority in Digital Security Governance,” Journal of European Public Policy, pp. 1–25, 2023.
  7. D. Mügge, “The Securitization of the EU’s Digital Tech Regulation,” Journal of European Public Policy, pp. 1–16, 2023.
  8. M. T. Fischer, S. D. Hirsbrunner, W. Jentner, M. Miller, D. A. Keim, and P. Helm, “Promoting Ethical Awareness in Communication Analysis: Investigating Potentials and Limits of Visual Analytics for Intelligence Applications,” in Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’22).   Association for Computing Machinery, 2022, pp. 877–889.
  9. B. Shneiderman, “Bridging the Gap Between Ethics and Practice,” ACM Transactions on Interactive Intelligent Systems, vol. 10, no. 4, pp. 1–31, 2020.
  10. C. Rigano, “Using Artificial Intelligence to Address Criminal Justice Needs,” National Institute of Justice Journal, vol. 280, no. 1-10, p. 17, 2019.
  11. P. M. Asaro, “AI Ethics in Predictive Policing: From Models of Threat to an Ethics of Care,” IEEE Technology and Society Magazine, vol. 38, no. 2, pp. 40–53, 2019.
  12. K. Alikhademi, E. Drobina, D. Prioleau, B. Richardson, D. Purves, and J. E. Gilbert, “A Review of Predictive Policing from the Perspective of Fairness,” Artificial Intelligence and Law, vol. 30, no. 1, pp. 1–17, 2022.
  13. M. T. Fischer, D. Seebacher, R. Sevastjanova, D. A. Keim, and M. El-Assady, “CommAID: Visual Analytics for Communication Analysis through Interactive Dynamics Modeling,” Computer Graphics Forum, vol. 40, no. 3, pp. 25–36, 2021.
  14. M. T. Fischer, F. Dennig, D. Seebacher, D. A. Keim, and M. El-Assady, “Communication Analysis through Visual Analytics: Current Practices, Challenges, and New Frontiers,” in 2022 IEEE Visualization in Data Science (VDS), 2022, pp. 6–16.
  15. UNODC, “Criminal Intelligence: Manual for Analysts,” Vienna, Austria, 2011. [Online]. Available: https://www.unodc.org/documents/organized-crime/Law-Enforcement/Criminal_Intelligence_for_Analysts.pdf
  16. R. Scheible, F. Thomczyk, P. Tippmann, V. Jaravine, and M. Boeker, “GottBERT: A Pure German Language Model,” arXiv preprint arXiv:2012.02110, 2020.
  17. C. Groenewald, B. L. W. Wong, S. Attfield, P. Passmore, and N. Kodagoda, “How Analysts Think: How Do Criminal Intelligence Analysts Recognise and Manage Significant Information?” in 2017 European Intelligence and Security Informatics Conference (EISIC).   IEEE, 2017, pp. 47–53.
  18. W. Elm, S. Potter, J. Tittle, D. Woods, J. Grossman, and E. Patterson, “Finding Decision Support Requirements for Effective Intelligence Analysis Tools,” Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 49, no. 3, pp. 297–301, 2005.
  19. J. Scholtz, “Metrics for Evaluation of Software Technology to Support Intelligence Analysis,” Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 49, no. 10, pp. 918–921, 2005.
  20. M. K. Dhami, “A Survey of Intelligence Analysts’ Perceptions of Analytic Tools,” in 2017 European Intelligence and Security Informatics Conference (EISIC).   IEEE, 2017, pp. 131–134.
  21. D. Nadeau and S. Sekine, “A Survey of Named Entity Recognition and Classification,” Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26, 2007.
  22. J. Li, A. Sun, J. Han, and C. Li, “A Survey on Deep Learning for Named Entity Recognition,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 1, pp. 50–70, 2020.
  23. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio, Eds.   Association for Computational Linguistics, 2019, pp. 4171–4186.
  24. J. Y. Lee, F. Dernoncourt, and P. Szolovits, “Transfer Learning for Named-Entity Recognition with Neural Networks,” arXiv preprint arXiv:1705.06273, 2017.
  25. S. Barbosa and S. Milan, “Do Not Harm in Private Chat Apps: Ethical Issues for Research on and with WhatsApp,” Westminster Papers in Communication and Culture, vol. 14, no. 1, pp. 49–65, 2019.
  26. F. Sperrle, D. Ceneda, and M. El-Assady, “Lotse: A Practical Framework for Guidance in Visual Analytics,” IEEE Transactions on Visualization and Computer Graphics, vol. PP, 2022.
  27. A. Zytek, D. Liu, R. Vaithianathan, and K. Veeramachaneni, “Sibyl: Understanding and Addressing the Usability Challenges of Machine Learning In High-Stakes Decision Making,” IEEE Transactions on Visualization and Computer Graphics, vol. 28, no. 1, pp. 1161–1171, 2022.
  28. M. Correll, “Ethical Dimensions of Visualization Research,” in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, S. Brewster, G. Fitzpatrick, A. Cox, and V. Kostakos, Eds.   New York, NY, USA: ACM, 2019, pp. 1–13.
  29. N. A. Tu, T. Huynh-The, K.-S. Wong, M. F. Demirci, and Y.-K. Lee, “Toward Efficient and Intelligent Video Analytics with Visual Privacy Protection for Large-Scale Surveillance,” The Journal of Supercomputing, vol. 77, no. 12, pp. 14 374–14 404, 2021.
  30. R. C. Geyer, T. Klein, and M. Nabi, “Differentially Private Federated Learning: A Client Level Perspective,” 2017.
  31. P. G. Shynu, H. Md. Shayan., and C. L. Chowdhary, “A Fuzzy based Data Perturbation Technique for Privacy Preserved Data Mining,” in 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE).   IEEE, 2020, pp. 1–4.
  32. V. Batagelj and A. Mrvar, “Pajek - Analysis and Visualization of Large Networks,” in Graph Drawing, ser. Lecture Notes in Computer Science.   Berlin, Heidelberg: Springer, 2002, pp. 77–103.
  33. K. Schwarz and R. Creutzburg, “Design of Professional Laboratory Exercises for Effective State-of-the-Art OSINT Investigation Tools - Part 3: Maltego,” Electronic Imaging, vol. 33, no. 3, pp. 45–1–45–23, 2021.
  34. H. A. D. E. Kodituwakku, A. Keller, and J. Gregor, “InSight2: A Modular Visual Analysis Platform for Network Situational Awareness in Large-Scale Networks,” Electronics, vol. 9, no. 10, p. 1747, 2020.
  35. M. Dowling, N. Wycoff, B. Mayer, J. Wenskovitch, S. Leman, L. House, N. Polys, C. North, and P. Hauck, “Interactive Visual Analytics for Sensemaking with Big Text,” Big Data Research, vol. 16, pp. 49–58, 2019.
  36. J. Zahalka and M. Worring, “Towards Interactive, Intelligent, and Integrated Multimedia Analytics,” in 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).   IEEE, 2014, pp. 3–12.
  37. A. Wu and H. Qu, “Multimodal Analysis of Video Collections: Visual Exploration of Presentation Techniques in TED Talks,” IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 7, pp. 2429–2442, 2020.
  38. H. Zeng, X. Wang, A. Wu, Y. Wang, Q. Li, A. Endert, and H. Qu, “EmoCo: Visual Analysis of Emotion Coherence in Presentation Videos,” IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 1, pp. 927–937, 2020.
  39. T. Tang, Y. Wu, Y. Wu, L. Yu, and Y. Li, “VideoModerator: A Risk-aware Framework for Multimodal Video Moderation in E-Commerce,” IEEE Transactions on Visualization and Computer Graphics, vol. 28, no. 1, pp. 846–856, 2022.
  40. J. Decker, A. Godwin, M. A. Livingston, and D. Royle, “A Scalable Architecture for Visual Data Exploration,” in IEEE Symposium on Visual Analytics Science and Technology, ser. VAST, J. Stasko and J. J. van Wijk, Eds.   Piscataway, NJ, USA: IEEE, 2009, pp. 221–222.
  41. Y.-a. Kang, C. Gorg, and J. Stasko, “Evaluating Visual Analytics Systems for Investigative Analysis: Deriving Design Principles From a Case Study,” in IEEE Symposium on Visual Analytics Science and Technology, ser. VAST, J. Stasko and J. J. van Wijk, Eds.   Piscataway, NJ, USA: IEEE, 2009, pp. 139–146.
  42. Y.-a. Kang and J. Stasko, “Characterizing the Intelligence Analysis Process: Informing Visual Analytics Design Through a Longitudinal Field Study,” in 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).   IEEE, 2011, pp. 21–30.
  43. Y. Lu, R. Kruger, D. Thom, F. Wang, S. Koch, T. Ertl, and R. Maciejewski, “Integrating Predictive Analytics and Social Media,” in 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).   IEEE, 2014, pp. 193–202.
  44. T. A. Keahey and K. C. Cox, “VIM: A Framework for Intelligence Analysis,” in IEEE Symposium on Information Visualization.   IEEE, 2004, pp. p22–p22.
  45. J. Stasko, C. Gorg, Z. Liu, and K. Singhal, “Jigsaw: Supporting Investigative Analysis through Interactive Visualization,” in 2007 IEEE Symposium on Visual Analytics Science and Technology.   IEEE, 2007, pp. 131–138.
  46. DataWalk Inc., “DataWalk,” 2020. [Online]. Available: https://datawalk.com/
  47. Nuix Pty Ltd, “Nuix Discover and Nuix Investigate,” 2020. [Online]. Available: https://www.nuix.com/products
  48. IBM, “i2 Analyst’s Notebook,” 2020. [Online]. Available: https://www.ibm.com/us-en/marketplace/analysts-notebook
  49. Palantir Technologies, Inc., “Gotham,” 2020. [Online]. Available: https://www.palantir.com/palantir-gotham/
  50. M. Scott, “How Ukraine used Russia’s digital playbook against the Kremlin,” POLITICO, 2022. [Online]. Available: https://www.politico.eu/article/ukraine-russia-digital-playbook-war/
  51. J. W. Mohr, R. Wagner-Pacifici, R. L. Breiger, and P. Bogdanov, “Graphing the Grammar of Motives in National Security Strategies: Cultural Interpretation, Automated Text Analysis and the Drama of Global Politics,” Poetics, vol. 41, no. 6, pp. 670–700, 2013.
  52. L. Ratinov and D. Roth, “Design Challenges and Misconceptions in Named Entity Recognition,” in Proceedings of the Thirteenth Conference on Computational Natural Language Learning, ser. CoNLL ’09.   USA: Association for Computational Linguistics, 2009, pp. 147–155.
  53. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention Is All You Need,” Advances in neural information processing systems, vol. 30, 2017.
  54. Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew, “HuggingFace’s Transformers: State-of-the-art Natural Language Processing,” CoRR, vol. abs/1910.03771, 2019.
  55. D. Benikova, C. Biemann, M. Kisselew, and S. Pado, “Germeval 2014 Named Entity Recognition Shared Task: Companion Paper,” in Workshop Proceedings of the 12th edition of the KONVENS conference, 2014, pp. 104–112.
  56. D. Schwimmbeck, “HuggingFace: Domischwimmbeck/Bert-base-german-cased-fine-tuned-ner,” 2022. [Online]. Available: https://huggingface.co/domischwimmbeck/bert-base-german-cased-fine-tuned-ner
  57. A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov, “Unsupervised Cross-Lingual Representation Learning at Scale,” Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 8440–8451, 2020.
  58. D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” International Conference on Learning Representations (ICLR), 2015.
  59. I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,” International Conference on Learning Representations (ICLR), 2019.
  60. Jeremy Howard and Sebastian Ruder, “Fine-tuned Language Models for Text Classification,” Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, pp. 328–339, 2018.
  61. A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever, “Robust Speech Recognition via Large-Scale Weak Supervision,” 2022.
  62. M. K. Sparrow, “The Application of Network Analysis to Criminal Intelligence: An Assessment of the Prospects,” Social Networks, vol. 13, no. 3, pp. 251–274, 1991.
  63. J. S. Yi, Y. A. Kang, J. Stasko, and J. Jacko, “Toward a Deeper Understanding of the Role of Interaction in Information Visualization,” Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1224–1231, 2007.
  64. OpenAI, “GPT-4 Technical Report,” 2023.
  65. J. Ribas, “Building the New Bing,” 2023. [Online]. Available: https://www.linkedin.com/pulse/building-new-bing-jordi-ribas/?src=aff-ref&trk=aff-ir_progid.8005_partid.10078_sid._adid.449670
  66. F. Gilardi, M. Alizadeh, and M. Kubli, “ChatGPT Outperforms Crowd-Workers for Text-Annotation Tasks,” 2023.
  67. A. Paleyes, R.-G. Urma, and N. D. Lawrence, “Challenges in Deploying Machine Learning: A Survey of Case Studies,” ACM Computing Surveys, vol. 55, no. 6, pp. 1–29, 2022.
  68. BVerfG, “Urteil des Ersten Senats (16.02.2023), BvR 1547/19, Rn. 1–178, ECLI:DE:BVerfG:2023:rs20230216.1bvr154719,” 2023. [Online]. Available: ECLI:DE:BVerfG:2023:rs20230216.1bvr154719
  69. O. S. Khan, B. Jónsson, J. Zahálka, S. Rudinac, and M. Worring, “Impact of Interaction Strategies on User Relevance Feedback,” in Proceedings of the 2021 International Conference on Multimedia Retrieval, W.-H. Cheng, M. Kankanhalli, M. Wang, W.-T. Chu, J. Liu, and M. Worring, Eds.   New York, NY, USA: ACM, 2021, pp. 590–598.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Maximilian T. Fischer (18 papers)
  2. Yannick Metz (9 papers)
  3. Lucas Joos (5 papers)
  4. Matthias Miller (11 papers)
  5. Daniel A. Keim (44 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.