Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Independent low-rank matrix analysis based on the Sinkhorn divergence source model for blind source separation (2401.01762v1)

Published 3 Jan 2024 in cs.SD and eess.AS

Abstract: The so-called independent low-rank matrix analysis (ILRMA) has demonstrated a great potential for dealing with the problem of determined blind source separation (BSS) for audio and speech signals. This method assumes that the spectra from different frequency bands are independent and the spectral coefficients in any frequency band are Gaussian distributed. The Itakura-Saito divergence is then employed to estimate the source model related parameters. In reality, however, the spectral coefficients from different frequency bands may be dependent, which is not considered in the existing ILRMA algorithm. This paper presents an improved version of ILRMA, which considers the dependency between the spectral coefficients from different frequency bands. The Sinkhorn divergence is then exploited to optimize the source model parameters. As a result of using the cross-band information, the BSS performance is improved. But the number of parameters to be estimated also increases significantly, and so is the computational complexity. To reduce the algorithm complexity, we apply the Kronecker product to decompose the modeling matrix into the product of a number of matrices of much smaller dimensionality. An efficient algorithm is then developed to implement the Sinkhorn divergence based BSS algorithm and the complexity is reduced by an order of magnitude.

Summary

We haven't generated a summary for this paper yet.