Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few-shot Image Generation via Information Transfer from the Built Geodesic Surface (2401.01749v2)

Published 3 Jan 2024 in cs.CV

Abstract: Images generated by most of generative models trained with limited data often exhibit deficiencies in either fidelity, diversity, or both. One effective solution to address the limitation is few-shot generative model adaption. However, the type of approaches typically rely on a large-scale pre-trained model, serving as a source domain, to facilitate information transfer to the target domain. In this paper, we propose a method called Information Transfer from the Built Geodesic Surface (ITBGS), which contains two module: Feature Augmentation on Geodesic Surface (FAGS); Interpolation and Regularization (I&R). With the FAGS module, a pseudo-source domain is created by projecting image features from the training dataset into the Pre-Shape Space, subsequently generating new features on the Geodesic surface. Thus, no pre-trained models is needed for the adaption process during the training of generative models with FAGS. I&R module are introduced for supervising the interpolated images and regularizing their relative distances, respectively, to further enhance the quality of generated images. Through qualitative and quantitative experiments, we demonstrate that the proposed method consistently achieves optimal or comparable results across a diverse range of semantically distinct datasets, even in extremely few-shot scenarios.

Citations (1)

Summary

We haven't generated a summary for this paper yet.