Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Keypoints for Robotic Cloth Manipulation using Synthetic Data (2401.01734v2)

Published 3 Jan 2024 in cs.CV

Abstract: Assistive robots should be able to wash, fold or iron clothes. However, due to the variety, deformability and self-occlusions of clothes, creating robot systems for cloth manipulation is challenging. Synthetic data is a promising direction to improve generalization, but the sim-to-real gap limits its effectiveness. To advance the use of synthetic data for cloth manipulation tasks such as robotic folding, we present a synthetic data pipeline to train keypoint detectors for almost-flattened cloth items. To evaluate its performance, we have also collected a real-world dataset. We train detectors for both T-shirts, towels and shorts and obtain an average precision of 64% and an average keypoint distance of 18 pixels. Fine-tuning on real-world data improves performance to 74% mAP and an average distance of only 9 pixels. Furthermore, we describe failure modes of the keypoint detectors and compare different approaches to obtain cloth meshes and materials. We also quantify the remaining sim-to-real gap and argue that further improvements to the fidelity of cloth assets will be required to further reduce this gap. The code, dataset and trained models are available

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. P. Jiménez, “Visual grasp point localization, classification and state recognition in robotic manipulation of cloth: An overview,” Robotics and Autonomous Systems, vol. 92, pp. 107–125, 2017.
  2. H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception, and control methods for deformable object manipulation,” Science Robotics, vol. 6, no. 54, p. eabd8803, 2021.
  3. H. Ha and S. Song, “Flingbot: The unreasonable effectiveness of dynamic manipulation for cloth unfolding,” in Conference on Robot Learning.   PMLR, 2022, pp. 24–33.
  4. Y. Avigal, L. Berscheid, T. Asfour, T. Kröger, and K. Goldberg, “Speedfolding: Learning efficient bimanual folding of garments,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 1–8.
  5. A. Canberk, C. Chi, H. Ha, B. Burchfiel, E. Cousineau, S. Feng, and S. Song, “Cloth funnels: Canonicalized-alignment for multi-purpose garment manipulation,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 5872–5879.
  6. R. Proesmans, A. Verleysen, and F. wyffels, “Unfoldir: Tactile robotic unfolding of cloth,” IEEE Robotics and Automation Letters, 2023.
  7. J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain randomization for transferring deep neural networks from simulation to the real world,” in 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS).   IEEE, 2017, pp. 23–30.
  8. J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield, “Deep object pose estimation for semantic robotic grasping of household objects,” in Conference on Robot Learning.   PMLR, 2018, pp. 306–316.
  9. N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in minutes using massively parallel deep reinforcement learning,” in Conference on Robot Learning.   PMLR, 2022, pp. 91–100.
  10. E. Wood, T. Baltrušaitis, C. Hewitt, S. Dziadzio, T. J. Cashman, and J. Shotton, “Fake it till you make it: face analysis in the wild using synthetic data alone,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 3681–3691.
  11. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2223–2232.
  12. A. Doumanoglou, J. Stria, G. Peleka, I. Mariolis, V. Petrik, A. Kargakos, L. Wagner, V. Hlaváč, T.-K. Kim, and S. Malassiotis, “Folding clothes autonomously: A complete pipeline,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1461–1478, 2016.
  13. V.-L. De Gusseme and F. wyffels, “Effective cloth folding trajectories in simulation with only two parameters,” Frontiers in Neurorobotics, vol. 16, p. 989702, 2022.
  14. E. Corona, G. Alenya, A. Gabas, and C. Torras, “Active garment recognition and target grasping point detection using deep learning,” Pattern Recognition, vol. 74, pp. 629–641, 2018.
  15. D. Seita, A. Ganapathi, R. Hoque, M. Hwang, E. Cen, A. K. Tanwani, A. Balakrishna, B. Thananjeyan, J. Ichnowski, N. Jamali, et al., “Deep imitation learning of sequential fabric smoothing from an algorithmic supervisor,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 9651–9658.
  16. “Nvidia flex,” https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/flex/index.html.
  17. J. Zhu, A. Cherubini, C. Dune, D. Navarro-Alarcon, F. Alambeigi, D. Berenson, F. Ficuciello, K. Harada, J. Kober, X. Li, et al., “Challenges and outlook in robotic manipulation of deformable objects,” IEEE Robotics & Automation Magazine, vol. 29, no. 3, pp. 67–77, 2022.
  18. J. Qian, T. Weng, L. Zhang, B. Okorn, and D. Held, “Cloth region segmentation for robust grasp selection,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 9553–9560.
  19. T. Lips and F. De Gusseme, Victor-Louis wyffels, “Learning keypoints from synthetic data for robotic cloth folding,” RMDO Workshop ICRA, 2022.
  20. D. Seita, N. Jamali, M. Laskey, A. K. Tanwani, R. Berenstein, P. Baskaran, S. Iba, J. Canny, and K. Goldberg, “Deep transfer learning of pick points on fabric for robot bed-making,” in The International Symposium of Robotics Research.   Springer, 2019, pp. 275–290.
  21. J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement learning for deformable object manipulation,” in Conference on Robot Learning.   PMLR, 2018, pp. 734–743.
  22. E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games, robotics and machine learning,” http://pybullet.org, 2016–2021.
  23. Blender Online Community, “Blender - a 3d modelling and rendering package,” http://www.blender.org, Blender Foundation.
  24. A. Ganapathi, P. Sundaresan, B. Thananjeyan, A. Balakrishna, D. Seita, J. Grannen, M. Hwang, R. Hoque, J. E. Gonzalez, N. Jamali, et al., “Learning dense visual correspondences in simulation to smooth and fold real fabrics,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 11 515–11 522.
  25. H. Bertiche, M. Madadi, and S. Escalera, “Cloth3d: clothed 3d humans,” in European Conference on Computer Vision.   Springer, 2020, pp. 344–359.
  26. A. Verleysen, M. Biondina, and F. wyffels, “Video dataset of human demonstrations of folding clothing for robotic folding,” The International Journal of Robotics Research, vol. 39, no. 9, pp. 1031–1036, 2020.
  27. T. Ziegler, J. Butepage, M. C. Welle, A. Varava, T. Novkovic, and D. Kragic, “Fashion landmark detection and category classification for robotics,” in 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC).   IEEE, 2020, pp. 81–88.
  28. I. Garcia-Camacho, J. Borràs, B. Calli, A. Norton, and G. Alenyà, “Household cloth object set: Fostering benchmarking in deformable object manipulation,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 5866–5873, 2022.
  29. S. Miller, M. Fritz, T. Darrell, and P. Abbeel, “Parametrized shape models for clothing,” in 2011 IEEE International Conference on Robotics and Automation.   IEEE, 2011, pp. 4861–4868.
  30. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, et al., “Segment anything,” arXiv preprint arXiv:2304.02643, 2023.
  31. PolyHaven Team, “Polyhaven: The public 3d assets library,” https://polyhaven.com/.
  32. X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking deep reinforcement learning for deformable object manipulation,” in Conference on Robot Learning.   PMLR, 2021, pp. 432–448.
  33. L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Reymann, T. B. McHugh, and V. Vanhoucke, “Google scanned objects: A high-quality dataset of 3d scanned household items,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 2553–2560.
  34. T. Jakab, A. Gupta, H. Bilen, and A. Vedaldi, “Unsupervised learning of object landmarks through conditional image generation,” Advances in neural information processing systems, vol. 31, 2018.
  35. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  36. Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, and Y. Li, “Maxvit: Multi-axis vision transformer,” in European conference on computer vision.   Springer, 2022, pp. 459–479.
  37. R. Wightman, “Pytorch image models,” https://github.com/rwightman/pytorch-image-models, 2019.
  38. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.   Springer, 2014, pp. 740–755.
  39. B. Poole, A. Jain, J. T. Barron, and B. Mildenhall, “Dreamfusion: Text-to-3d using 2d diffusion,” arXiv preprint arXiv:2209.14988, 2022.
  40. D. Blanco-Mulero, O. Barbany, G. Alcan, A. Colomé, C. Torras, and V. Kyrki, “Benchmarking the sim-to-real gap in cloth manipulation,” arXiv preprint arXiv:2310.09543, 2023.
  41. M. Li, D. M. Kaufman, and C. Jiang, “Codimensional incremental potential contact,” ACM Trans. Graph., vol. 40, no. 4, jul 2021.
  42. T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, J. Peralta, B. Ichter, et al., “Scaling robot learning with semantically imagined experience,” arXiv preprint arXiv:2302.11550, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.