Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lightweight Adaptive Feature De-drifting for Compressed Image Classification (2401.01724v1)

Published 3 Jan 2024 in cs.CV

Abstract: JPEG is a widely used compression scheme to efficiently reduce the volume of transmitted images. The artifacts appear among blocks due to the information loss, which not only affects the quality of images but also harms the subsequent high-level tasks in terms of feature drifting. High-level vision models trained on high-quality images will suffer performance degradation when dealing with compressed images, especially on mobile devices. Numerous learning-based JPEG artifact removal methods have been proposed to handle visual artifacts. However, it is not an ideal choice to use these JPEG artifact removal methods as a pre-processing for compressed image classification for the following reasons: 1. These methods are designed for human vision rather than high-level vision models; 2. These methods are not efficient enough to serve as pre-processing on resource-constrained devices. To address these issues, this paper proposes a novel lightweight AFD module to boost the performance of pre-trained image classification models when facing compressed images. First, a FDE-Net is devised to generate the spatial-wise FDM in the DCT domain. Next, the estimated FDM is transmitted to the FE-Net to generate the mapping relationship between degraded features and corresponding high-quality features. A simple but effective RepConv block equipped with structural re-parameterization is utilized in FE-Net, which enriches feature representation in the training phase while maintaining efficiency in the deployment phase. After training on limited compressed images, the AFD-Module can serve as a "plug-and-play" model for pre-trained classification models to improve their performance on compressed images. Experiments demonstrate that our proposed AFD module can comprehensively improve the accuracy of the pre-trained classification models and significantly outperform the existing methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. Y. Tai, J. Yang, X. Liu, and C. Xu, “Memnet: A persistent memory network for image restoration,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 4539–4547.
  2. J. Jiang, K. Zhang, and R. Timofte, “Towards flexible blind jpeg artifacts removal,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 4997–5006.
  3. E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image super-resolution: Dataset and study,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 126–135.
  4. J. Liu, D. Liu, W. Yang, S. Xia, X. Zhang, and Y. Dai, “A comprehensive benchmark for single image compression artifact reduction,” IEEE Transactions on Image Processing, vol. 29, pp. 7845–7860, 2020.
  5. M. Ehrlich, L. Davis, S.-N. Lim, and A. Shrivastava, “Analyzing and mitigating compression defects in deep learning,” arXiv preprint arXiv:2011.08932, 2020.
  6. L. Galteri, L. Seidenari, M. Bertini, and A. Del Bimbo, “Deep generative adversarial compression artifact removal,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4826–4835.
  7. H. Yin, P. Molchanov, J. M. Alvarez, Z. Li, A. Mallya, D. Hoiem, N. K. Jha, and J. Kautz, “Dreaming to distill: Data-free knowledge transfer via deepinversion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8715–8724.
  8. G. K. Nayak, K. R. Mopuri, V. Shaj, V. B. Radhakrishnan, and A. Chakraborty, “Zero-shot knowledge distillation in deep networks,” in International Conference on Machine Learning.   PMLR, 2019, pp. 4743–4751.
  9. Y. Fang, P.-T. Yap, W. Lin, H. Zhu, and M. Liu, “Source-free unsupervised domain adaptation: A survey,” arXiv preprint arXiv:2301.00265, 2022.
  10. P. Oza, V. A. Sindagi, V. V. Sharmini, and V. M. Patel, “Unsupervised domain adaptation of object detectors: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  11. J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE transactions on image processing, vol. 19, no. 11, pp. 2861–2873, 2010.
  12. X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “Repvgg: Making vgg-style convnets great again,” arXiv preprint arXiv:2101.03697, 2021.
  13. D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to common corruptions and perturbations,” arXiv preprint arXiv:1903.12261, 2019.
  14. A. Foi, V. Katkovnik, and K. Egiazarian, “Pointwise shape-adaptive dct for high-quality denoising and deblocking of grayscale and color images,” IEEE transactions on image processing, vol. 16, no. 5, pp. 1395–1411, 2007.
  15. A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke, M. Ikeda, K. Andersson, M. Zhou, and G. Van der Auwera, “Hevc deblocking filter,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1746–1754, 2012.
  16. X. Fu, M. Wang, X. Cao, X. Ding, and Z.-J. Zha, “A model-driven deep unfolding method for jpeg artifacts removal,” IEEE Transactions on Neural Networks and Learning Systems, 2021.
  17. C. Dong, Y. Deng, C. Change Loy, and X. Tang, “Compression artifacts reduction by a deep convolutional network,” in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 576–584.
  18. K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising,” IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, 2017.
  19. S. B. Yoo, K. Choi, and J. B. Ra, “Post-processing for blocking artifact reduction based on inter-block correlation,” IEEE Transactions on Multimedia, vol. 16, no. 6, pp. 1536–1548, 2014.
  20. L. Galteri, L. Seidenari, M. Bertini, and A. Del Bimbo, “Deep universal generative adversarial compression artifact removal,” IEEE Transactions on Multimedia, vol. 21, no. 8, pp. 2131–2145, 2019.
  21. T. Li, X. He, L. Qing, Q. Teng, and H. Chen, “An iterative framework of cascaded deblocking and superresolution for compressed images,” IEEE Transactions on Multimedia, vol. 20, no. 6, pp. 1305–1320, 2017.
  22. X. Wang, X. Fu, Y. Zhu, and Z.-J. Zha, “Jpeg artifacts removal via contrastive representation learning,” in European Conference on Computer Vision.   Springer, 2022, pp. 615–631.
  23. X.-J. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections,” arXiv preprint arXiv:1603.09056, 2016.
  24. Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S. Huang, “D3: Deep dual-domain based fast restoration of jpeg-compressed images,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2764–2772.
  25. X. Zhang, W. Yang, Y. Hu, and J. Liu, “Dmcnn: Dual-domain multi-scale convolutional neural network for compression artifacts removal,” in 2018 25th IEEE International Conference on Image Processing (ICIP).   IEEE, 2018, pp. 390–394.
  26. Y. Zhang, K. Li, K. Li, B. Zhong, and Y. Fu, “Residual non-local attention networks for image restoration,” in ICLR, 2019.
  27. X. Fu, Z.-J. Zha, F. Wu, X. Ding, and J. Paisley, “Jpeg artifacts reduction via deep convolutional sparse coding,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2501–2510.
  28. Y. Wang, Y. Cao, Z.-J. Zha, J. Zhang, and Z. Xiong, “Deep degradation prior for low-quality image classification,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11 049–11 058.
  29. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.
  30. V. Verma, N. Agarwal, and N. Khanna, “Dct-domain deep convolutional neural networks for multiple jpeg compression classification,” Signal Processing: Image Communication, vol. 67, pp. 22–33, 2018.
  31. Y.-L. Chen and C.-T. Hsu, “Detecting recompression of jpeg images via periodicity analysis of compression artifacts for tampering detection,” IEEE Transactions on Information Forensics and Security, vol. 6, no. 2, pp. 396–406, 2011.
  32. D. Liu, B. Wen, X. Liu, Z. Wang, and T. S. Huang, “When image denoising meets high-level vision tasks: a deep learning approach,” in Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018, pp. 842–848.
  33. B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng, “An all-in-one network for dehazing and beyond,” arXiv preprint arXiv:1707.06543, 2017.
  34. T. Son, J. Kang, N. Kim, S. Cho, and S. Kwak, “Urie: Universal image enhancement for visual recognition in the wild,” in European Conference on Computer Vision.   Springer, 2020, pp. 749–765.
  35. W. Tan, B. Yan, and B. Bare, “Feature super-resolution: Make machine see more clearly,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3994–4002.
  36. J. Noh, W. Bae, W. Lee, J. Seo, and G. Kim, “Better to follow, follow to be better: Towards precise supervision of feature super-resolution for small object detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9725–9734.
  37. Y. Sun, Y. Wang, Y. Cao, and Z.-J. Zha, “Lightweight wavelet-based network for jpeg artifacts removal,” in International Conference on Multimedia Modeling.   Springer, 2022, pp. 134–145.
  38. N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and lightweight super-resolution with cascading residual network,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 252–268.
  39. Y. Wang, Y. Cao, Z.-J. Zha, J. Zhang, Z. Xiong, W. Zhang, and F. Wu, “Progressive retinex: Mutually reinforced illumination-noise perception network for low-light image enhancement,” in Proceedings of the 27th ACM international conference on multimedia, 2019, pp. 2015–2023.
  40. Y. Wang, L. Peng, L. Li, Y. Cao, and Z.-J. Zha, “Decoupling-and-aggregating for image exposure correction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 18 115–18 124.
  41. H. Wang, L. Peng, Y. Sun, Z. Wan, Y. Wang, and Y. Cao, “Brightness perceiving for recursive low-light image enhancement,” IEEE Transactions on Artificial Intelligence, 2023.
  42. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention.   Springer, 2015, pp. 234–241.
  43. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.
  44. Y. Ma, H. Xiong, Z. Hu, and L. Ma, “Efficient super resolution using binarized neural network,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019, pp. 0–0.
  45. J. Xin, N. Wang, X. Jiang, J. Li, H. Huang, and X. Gao, “Binarized neural network for single image super resolution,” in European Conference on Computer Vision.   Springer, 2020, pp. 91–107.
  46. Y. Li, S. Gu, K. Zhang, L. Van Gool, and R. Timofte, “Dhp: Differentiable meta pruning via hypernetworks,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VIII 16.   Springer, 2020, pp. 608–624.
  47. W. Lee, J. Lee, D. Kim, and B. Ham, “Learning with privileged information for efficient image super-resolution,” in European Conference on Computer Vision.   Springer, 2020, pp. 465–482.
  48. X. Ding, X. Zhang, J. Han, and G. Ding, “Diverse branch block: Building a convolution as an inception-like unit,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 10 886–10 895.
  49. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  50. Y. M. Asano, C. Rupprecht, and A. Vedaldi, “A critical analysis of self-supervision, or what we can learn from a single image,” arXiv preprint arXiv:1904.13132, 2019.
  51. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.
  52. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  53. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  54. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.
  55. Y. Zhang, K. Li, K. Li, B. Zhong, and Y. Fu, “Residual non-local attention networks for image restoration,” in International Conference on Learning Representations, 2019.
  56. S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and L. Shao, “Learning enriched features for real image restoration and enhancement,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16.   Springer, 2020, pp. 492–511.
  57. Y. Li, Y. Fan, X. Xiang, D. Demandolx, R. Ranjan, R. Timofte, and L. Van Gool, “Efficient and explicit modelling of image hierarchies for image restoration,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 18 278–18 289.
  58. Y. Mei, Y. Fan, Y. Zhang, J. Yu, Y. Zhou, D. Liu, Y. Fu, T. S. Huang, and H. Shi, “Pyramid attention network for image restoration,” International Journal of Computer Vision, pp. 1–19, 2023.
  59. G. Teng, R. Jiang, X. Liu, F. Zhou, and Y. Chen, “Earn: toward efficient and robust jpeg compression artifact reduction,” The Visual Computer, pp. 1–21, 2023.
  60. Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network for image restoration,” TPAMI, 2020.
  61. S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and L. Shao, “Learning enriched features for real image restoration and enhancement,” in ECCV, 2020.
  62. Z. Yang, J. Huang, J. Chang, M. Zhou, H. Yu, J. Zhang, and F. Zhao, “Visual recognition-driven image restoration for multiple degradation with intrinsic semantics recovery,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 14 059–14 070.
  63. Y. Pei, Y. Huang, Q. Zou, Y. Lu, and S. Wang, “Does haze removal help cnn-based image classification?” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 682–697.
  64. C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The caltech-ucsd birds-200-2011 dataset,” 2011.
  65. N. Barman and M. G. Martini, “An evaluation of the next-generation image coding standard avif,” in 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX).   IEEE, 2020, pp. 1–4.
  66. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition.   Ieee, 2009, pp. 248–255.
  67. S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H. Yang, “Restormer: Efficient transformer for high-resolution image restoration,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 5728–5739.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Long Peng (29 papers)
  2. Yang Cao (295 papers)
  3. Yuejin Sun (2 papers)
  4. Yang Wang (672 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.