Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HEOM-QUICK2: a general-purpose simulator for fermionic many-body open quantum systems -- An Update (2401.01715v2)

Published 3 Jan 2024 in cond-mat.str-el, cond-mat.stat-mech, and quant-ph

Abstract: Many-body open quantum systems (OQS) have a profound impact on various subdisciplines of physics, chemistry, and biology. Thus, the development of a computer program capable of accurately, efficiently, and versatilely simulating many-body OQS is highly desirable. In recent years, we have focused on the advancement of numerical algorithms based on the fermionic hierarchical equations of motion (HEOM) theory. Being in-principle exact, this approach allows for the precise characterization of many-body correlations, non-Markovian memory, and non-equilibrium thermodynamic conditions. These efforts now lead to the establishment of a new computer program, HEOM for QUantum Impurity with a Correlated Kernel, version 2 (HEOM-QUICK2), which, to the best of our knowledge, is currently the only general-purpose simulator for fermionic many-body OQS. Compared with version 1, the HEOM-QUICK2 program features more efficient solvers for stationary states, more accurate treatment of non-Markovian memory, and improved numerical stability for long-time dissipative dynamics. Integrated with quantum chemistry software, HEOM-QUICK2 has become a valuable theoretical tool for the precise simulation of realistic many-body OQS, particularly the single atomic or molecular junctions. Furthermore, the unprecedented precision achieved by HEOM-QUICK2 enables accurate simulation of low-energy spin excitations and coherent spin relaxation. The unique usefulness of HEOM-QUICK2 is demonstrated through several examples of strongly correlated quantum impurity systems under non-equilibrium conditions. Thus, the new HEOM-QUICK2 program offers a powerful and comprehensive tool for studying many-body OQS with exotic quantum phenomena and exploring applications in various disciplines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (180)
  1. Phys. Rev. B 73, 195304 (2006).
  2. Phys. Rev. B 80, 205114 (2009).
  3. Phys. Rev. Lett. 119, 156601 (2017).
  4. J. Appl. Phys. 109, 07C732 (2011).
  5. Phys. Rev. B 84, 035445 (2011).
  6. Phys. Rev. B 91, 245154 (2015).
  7. Phys. Rev. B 100, 201104 (2019).
  8. Phys. Chem. Chem. Phys. 23, 5878 (2021).
  9. K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
  10. Rev. Mod. Phys. 80, 395 (2008).
  11. F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801 (2005).
  12. D. Ceperley and B. Alder, Science 231, 555 (1986).
  13. Phys. Rev. B 95, 085144 (2017).
  14. Phys. Rev. Lett. 125, 047702 (2020).
  15. Phys. Rev. X 12, 041018 (2022).
  16. Phys. Rev. Lett. 115, 266802 (2015).
  17. Phys. Rev. Lett. 130, 186301 (2023).
  18. G. Cohen and M. Galperin, J. Chem. Phys. 152, 090901 (2020).
  19. Phys. Rev. B 107, 245135 (2023).
  20. Nat. Commun. 14, 3601 (2023).
  21. Phys. Rev. B 105, 165133 (2022).
  22. U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
  23. Phys. Rev. Lett. 88, 256403 (2002).
  24. C. A. Büsser and F. Heidrich-Meisner, Phys. Rev. Lett. 111, 246807 (2013).
  25. Phys. Rep. 324, 1 (2000).
  26. H. Wang and M. Thoss, J. Chem. Phys. 119, 1289 (2003).
  27. U. Manthe, J. Chem. Phys. 128, 164116 (2008).
  28. H. Wang and M. Thoss, J. Chem. Phys. 131, 024114 (2009).
  29. J. Chem. Phys. 152, 204105 (2020).
  30. J. Chem. Phys. 152, 204106 (2020).
  31. J. Chem. Phys. 151, 164110 (2019).
  32. Phys. Rev. Lett. 123, 050601 (2019).
  33. Y.-A. Yan and J. Shao, Phys. Rev. A 108, 012218 (2023).
  34. J. M. Moix and J. Cao, J. Chem. Phys. 139, 134106 (2013).
  35. J. T. Stockburger and H. Grabert, Phys. Rev. Lett. 88, 170407 (2002).
  36. L. Diósi and W. T. Strunz, Phys. Lett. A 235, 569 (1997).
  37. I. Percival, Quantum State Diffusion, Cambridge University Press, Cambridge, 1999.
  38. L. Mühlbacher and E. Rabani, Phys. Rev. Lett. 100, 176403 (2008).
  39. Nat. Commun. 9, 3322 (2018).
  40. E. Ye and G. K.-L. Chan, J. Chem. Phys. 155, 044104 (2021).
  41. Phys. Rev. B 107, 195101 (2023).
  42. G. Stefanucci and S. Kurth, Nano Lett. 15, 8020 (2015).
  43. D. Jacob, Journal of Physics: Condensed Matter 30, 354003 (2018).
  44. Y. Tanimura and R. Kubo, J. Phys. Soc. Jpn. 58, 101 (1989).
  45. Chem. Phys. Lett. 395, 216 (2004).
  46. J. Chem. Phys. 128, 234703 (2008).
  47. J. Chem. Phys. 130, 084105 (2009).
  48. Phys. Rev. B 88, 235426 (2013).
  49. J. Phys. Chem. Lett. 11, 4080 (2020).
  50. J. Chem. Phys. 143, 224112 (2015).
  51. Phys. Rev. B 92, 085430 (2015).
  52. Phys. Rev. B 94, 201407 (2016).
  53. Phys. Rev. B 95, 214308 (2017).
  54. Phys. Rev. B 98, 081404 (2018).
  55. J. Chem. Phys. 148, 174102 (2018).
  56. K. Nakamura and Y. Tanimura, Phys. Rev. A 98, 012109 (2018).
  57. New J. Phys. 19, 013007 (2017).
  58. J. Chem. Phys. 156, 194102 (2022).
  59. Phys. Rev. B 103, 235413 (2021).
  60. C. Kaspar and M. Thoss, J. Phys. Chem. A 125, 5190 (2021).
  61. J. Chem. Phys. 153, 204109 (2020).
  62. Y. Tanimura, J. Chem. Phys. 153, 020901 (2020).
  63. J. Chem. Phys. 156, 064107 (2022).
  64. Phys. Rev. B 105, 195435 (2022).
  65. Phys. Rev. B 101, 184304 (2020).
  66. Phys. Rev. B 106, 075419 (2022).
  67. J. Chem. Phys. 147, 164112 (2017).
  68. J. Chem. Phys. 147, 244112 (2017).
  69. Z. Gong and J. Wu, J. Chem. Phys. 151, 224109 (2019).
  70. J. Chem. Phys. 150, 084114 (2019).
  71. Phys. Rev. B 107, 115416 (2023).
  72. C. Schinabeck and M. Thoss, Phys. Rev. B 101, 075422 (2020).
  73. Phys. Rev. B 102, 195421 (2020).
  74. L. Song and Q. Shi, Phys. Rev. B 95, 064308 (2017).
  75. J. Chem. Phys. 156, 134114 (2022).
  76. J. Zhang and Y. Tanimura, J. Chem. Phys. 156, 174112 (2022).
  77. S. Koyanagi and Y. Tanimura, J. Chem. Phys. 157, 084110 (2022).
  78. J. Chem. Phys. 156, 244102 (2022).
  79. J. Chem. Phys. 157, 084103 (2022).
  80. S. Sakamoto and Y. Tanimura, J. Phys. Chem. Lett. 8, 5390 (2017).
  81. J. Chem. Phys. 150, 044109 (2019).
  82. J. Phys. Chem. A 120, 1562 (2016).
  83. H. Takahashi and Y. Tanimura, J. Chem. Phys. 158, 044115 (2023).
  84. T. Ikeda and Y. Tanimura, J. Chem. Phys. 147, 014102 (2017).
  85. Y. Yan, J. Chem. Phys. 140, 054105 (2014).
  86. J. Chem. Phys. 156, 221102 (2022).
  87. J. Chem. Theory Comput. 7, 2166 (2011).
  88. M. Tsuchimoto and Y. Tanimura, J. Chem. Theory Comput. 11, 3859 (2015).
  89. J. Strümpfer and K. Schulten, J. Chem. Theory Comput. 8, 2808 (2012).
  90. Dm-heom: A portable and scalable solver-framework for the hierarchical equations of motion, in 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 947–956.
  91. Int. J. Quantum Chem. 120, e26373 (2020).
  92. Phys. Rev. Res. 5, 013181 (2023).
  93. Commun. Phys. 6, 313 (2023).
  94. Phys. Rev. Res. 5, 043177 (2023).
  95. WIREs Comput. Mol. Sci. 6, 608 (2016).
  96. Phys. Rev. B 90, 165116 (2014).
  97. Phys. Rev. B 91, 205106 (2015).
  98. Phys. Rev. B 94, 245105 (2016).
  99. J. Chem. Phys. 144, 034101 (2016).
  100. J. Chem. Phys. 151, 224704 (2019).
  101. J. Chem. Phys. 141, 084713 (2014).
  102. Phys. Rev. B 93, 125114 (2016).
  103. J. Chem. Phys. 145, 154301 (2016).
  104. Current Chinese Science 2, 310 (2022).
  105. JUSTC 53, 0302 (2023).
  106. Science 366, 623 (2019).
  107. Science 364, 670 (2019).
  108. Phys. Rev. Lett. 115, 016802 (2015).
  109. Phys. Rev. Res. 3, 043185 (2021).
  110. Nat. Nanotechnol. 9, 64 (2014).
  111. Nano Lett. 15, 4024 (2015).
  112. Nat. Commun. 8, 16012 (2017).
  113. Nat. Commun. 8, 1974 (2017).
  114. Science 350, 417 (2015).
  115. Nat. Chem. 14, 59 (2022).
  116. Science 382, 87 (2023).
  117. npj Quantum Inf. 9, 48 (2023).
  118. L. Kouwenhoven and L. Glazman, Physics World 14, 33 (2001).
  119. Science 309, 1542 (2005).
  120. J. Chem. Phys. 150, 184109 (2019).
  121. J. Chem. Phys. 158, 014106 (2023).
  122. Phys. Rev. B 88, 035129 (2013).
  123. J. Chem. Phys. 151, 024110 (2019).
  124. J. Chem. Phys. 152, 064107 (2020).
  125. J. Phys. Chem. Lett. 9, 2418 (2018).
  126. Nat. Commun. 11, 2566 (2020).
  127. J. Phys. Chem. Lett. 13, 2094 (2022).
  128. J. Phys. Chem. Lett. 13, 11262 (2022).
  129. Phys. Rep. 830, 1 (2019).
  130. Phys. Rev. B 103, 085411 (2021).
  131. J. Chem. Phys. 148, 234108 (2018).
  132. J. Chem. Phys. 133, 101106 (2010).
  133. T. Ozaki, Phys. Rev. B 75, 035123 (2007).
  134. J. Chem. Phys. 142, 104112 (2015).
  135. J. Chem. Phys. 157, 224107 (2022).
  136. Chin. J. Chem. Phys. 34, 905 (2021).
  137. J. Chem. Phys. 122, 041103 (2005).
  138. Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001 (2006).
  139. H.-D. Zhang and Y. Yan, J. Chem. Phys. 143, 214112 (2015).
  140. Y. Tanimura, J. Chem. Phys. 142, 144110 (2015).
  141. J. Chem. Phys. 129, 184112 (2008).
  142. New J. Phys. 10, 093016 (2008).
  143. Phys. Rev. Lett. 83, 808 (1999).
  144. R. W. Freund, SIAM J. Sci. Comput. 14, 470 (1993).
  145. J. Chem. Phys. 147, 044105 (2017).
  146. Phys. Rev. Lett. 109, 266403 (2012).
  147. J. Phys. Chem. C 123, 30754 (2019).
  148. Nat. Commun. 6, 8536 (2015).
  149. Science 328, 1370 (2010).
  150. Phys. Rev. Lett. 124, 167202 (2020).
  151. Phys. Chem. Chem. Phys. 20, 26396 (2018).
  152. Chemical Communications 54, 9135 (2018).
  153. A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism, Cambridge University Press, Cambridge, 1993.
  154. Phys. Rev. Lett. 98, 057201 (2007).
  155. Phys. Rev. Lett. 108, 230501 (2012).
  156. Nat. Commun. 5, 5304 (2014).
  157. L. Gu and R. Wu, Phys. Rev. Lett. 125, 117203 (2020).
  158. Science 329, 1628 (2010).
  159. Science 354, 96 (2016).
  160. Science 366, 509 (2019).
  161. Science 372, 964 (2021).
  162. P. Nozières and A. Blandin, J. Phys. France 41, 193 (1980).
  163. Phys. Rev. Lett. 103, 197202 (2009).
  164. R. Borrelli, J. Chem. Phys. 150, 234102 (2019).
  165. J. Chem. Phys. 154, 194104 (2021).
  166. R. Borrelli and M. F. Gelin, WIREs Comput. Mol. Sci. 11, e1539 (2021).
  167. Phys. Rev. B 107, 195429 (2023).
  168. Y. Ke, J. Chem. Phys. 158, 211102 (2023).
  169. G. Carleo and M. Troyer, Science 355, 602 (2017).
  170. Nat. Phys. 15, 887 (2019).
  171. M. J. Hartmann and G. Carleo, Phys. Rev. Lett. 122, 250502 (2019).
  172. Phys. Rev. Lett. 127, 230501 (2021).
  173. G. Torlai and R. G. Melko, Phys. Rev. Lett. 120, 240503 (2018).
  174. Phys. Rev. Lett. 127, 270503 (2021).
  175. J. Chem. Theory Comput. 19, 4851 (2023).
  176. Phys. Rev. Lett. 125, 010501 (2020).
  177. Phys. Rev. Res. 4, 013097 (2022).
  178. J. Chem. Phys. 149, 064106 (2018).
  179. Phys. Rev. Lett. 129, 230601 (2022).
  180. T. P. Fay, J. Chem. Phys. 157, 054108 (2022).
Citations (5)

Summary

We haven't generated a summary for this paper yet.