HEOM-QUICK2: a general-purpose simulator for fermionic many-body open quantum systems -- An Update (2401.01715v2)
Abstract: Many-body open quantum systems (OQS) have a profound impact on various subdisciplines of physics, chemistry, and biology. Thus, the development of a computer program capable of accurately, efficiently, and versatilely simulating many-body OQS is highly desirable. In recent years, we have focused on the advancement of numerical algorithms based on the fermionic hierarchical equations of motion (HEOM) theory. Being in-principle exact, this approach allows for the precise characterization of many-body correlations, non-Markovian memory, and non-equilibrium thermodynamic conditions. These efforts now lead to the establishment of a new computer program, HEOM for QUantum Impurity with a Correlated Kernel, version 2 (HEOM-QUICK2), which, to the best of our knowledge, is currently the only general-purpose simulator for fermionic many-body OQS. Compared with version 1, the HEOM-QUICK2 program features more efficient solvers for stationary states, more accurate treatment of non-Markovian memory, and improved numerical stability for long-time dissipative dynamics. Integrated with quantum chemistry software, HEOM-QUICK2 has become a valuable theoretical tool for the precise simulation of realistic many-body OQS, particularly the single atomic or molecular junctions. Furthermore, the unprecedented precision achieved by HEOM-QUICK2 enables accurate simulation of low-energy spin excitations and coherent spin relaxation. The unique usefulness of HEOM-QUICK2 is demonstrated through several examples of strongly correlated quantum impurity systems under non-equilibrium conditions. Thus, the new HEOM-QUICK2 program offers a powerful and comprehensive tool for studying many-body OQS with exotic quantum phenomena and exploring applications in various disciplines.
- Phys. Rev. B 73, 195304 (2006).
- Phys. Rev. B 80, 205114 (2009).
- Phys. Rev. Lett. 119, 156601 (2017).
- J. Appl. Phys. 109, 07C732 (2011).
- Phys. Rev. B 84, 035445 (2011).
- Phys. Rev. B 91, 245154 (2015).
- Phys. Rev. B 100, 201104 (2019).
- Phys. Chem. Chem. Phys. 23, 5878 (2021).
- K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
- Rev. Mod. Phys. 80, 395 (2008).
- F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801 (2005).
- D. Ceperley and B. Alder, Science 231, 555 (1986).
- Phys. Rev. B 95, 085144 (2017).
- Phys. Rev. Lett. 125, 047702 (2020).
- Phys. Rev. X 12, 041018 (2022).
- Phys. Rev. Lett. 115, 266802 (2015).
- Phys. Rev. Lett. 130, 186301 (2023).
- G. Cohen and M. Galperin, J. Chem. Phys. 152, 090901 (2020).
- Phys. Rev. B 107, 245135 (2023).
- Nat. Commun. 14, 3601 (2023).
- Phys. Rev. B 105, 165133 (2022).
- U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
- Phys. Rev. Lett. 88, 256403 (2002).
- C. A. Büsser and F. Heidrich-Meisner, Phys. Rev. Lett. 111, 246807 (2013).
- Phys. Rep. 324, 1 (2000).
- H. Wang and M. Thoss, J. Chem. Phys. 119, 1289 (2003).
- U. Manthe, J. Chem. Phys. 128, 164116 (2008).
- H. Wang and M. Thoss, J. Chem. Phys. 131, 024114 (2009).
- J. Chem. Phys. 152, 204105 (2020).
- J. Chem. Phys. 152, 204106 (2020).
- J. Chem. Phys. 151, 164110 (2019).
- Phys. Rev. Lett. 123, 050601 (2019).
- Y.-A. Yan and J. Shao, Phys. Rev. A 108, 012218 (2023).
- J. M. Moix and J. Cao, J. Chem. Phys. 139, 134106 (2013).
- J. T. Stockburger and H. Grabert, Phys. Rev. Lett. 88, 170407 (2002).
- L. Diósi and W. T. Strunz, Phys. Lett. A 235, 569 (1997).
- I. Percival, Quantum State Diffusion, Cambridge University Press, Cambridge, 1999.
- L. Mühlbacher and E. Rabani, Phys. Rev. Lett. 100, 176403 (2008).
- Nat. Commun. 9, 3322 (2018).
- E. Ye and G. K.-L. Chan, J. Chem. Phys. 155, 044104 (2021).
- Phys. Rev. B 107, 195101 (2023).
- G. Stefanucci and S. Kurth, Nano Lett. 15, 8020 (2015).
- D. Jacob, Journal of Physics: Condensed Matter 30, 354003 (2018).
- Y. Tanimura and R. Kubo, J. Phys. Soc. Jpn. 58, 101 (1989).
- Chem. Phys. Lett. 395, 216 (2004).
- J. Chem. Phys. 128, 234703 (2008).
- J. Chem. Phys. 130, 084105 (2009).
- Phys. Rev. B 88, 235426 (2013).
- J. Phys. Chem. Lett. 11, 4080 (2020).
- J. Chem. Phys. 143, 224112 (2015).
- Phys. Rev. B 92, 085430 (2015).
- Phys. Rev. B 94, 201407 (2016).
- Phys. Rev. B 95, 214308 (2017).
- Phys. Rev. B 98, 081404 (2018).
- J. Chem. Phys. 148, 174102 (2018).
- K. Nakamura and Y. Tanimura, Phys. Rev. A 98, 012109 (2018).
- New J. Phys. 19, 013007 (2017).
- J. Chem. Phys. 156, 194102 (2022).
- Phys. Rev. B 103, 235413 (2021).
- C. Kaspar and M. Thoss, J. Phys. Chem. A 125, 5190 (2021).
- J. Chem. Phys. 153, 204109 (2020).
- Y. Tanimura, J. Chem. Phys. 153, 020901 (2020).
- J. Chem. Phys. 156, 064107 (2022).
- Phys. Rev. B 105, 195435 (2022).
- Phys. Rev. B 101, 184304 (2020).
- Phys. Rev. B 106, 075419 (2022).
- J. Chem. Phys. 147, 164112 (2017).
- J. Chem. Phys. 147, 244112 (2017).
- Z. Gong and J. Wu, J. Chem. Phys. 151, 224109 (2019).
- J. Chem. Phys. 150, 084114 (2019).
- Phys. Rev. B 107, 115416 (2023).
- C. Schinabeck and M. Thoss, Phys. Rev. B 101, 075422 (2020).
- Phys. Rev. B 102, 195421 (2020).
- L. Song and Q. Shi, Phys. Rev. B 95, 064308 (2017).
- J. Chem. Phys. 156, 134114 (2022).
- J. Zhang and Y. Tanimura, J. Chem. Phys. 156, 174112 (2022).
- S. Koyanagi and Y. Tanimura, J. Chem. Phys. 157, 084110 (2022).
- J. Chem. Phys. 156, 244102 (2022).
- J. Chem. Phys. 157, 084103 (2022).
- S. Sakamoto and Y. Tanimura, J. Phys. Chem. Lett. 8, 5390 (2017).
- J. Chem. Phys. 150, 044109 (2019).
- J. Phys. Chem. A 120, 1562 (2016).
- H. Takahashi and Y. Tanimura, J. Chem. Phys. 158, 044115 (2023).
- T. Ikeda and Y. Tanimura, J. Chem. Phys. 147, 014102 (2017).
- Y. Yan, J. Chem. Phys. 140, 054105 (2014).
- J. Chem. Phys. 156, 221102 (2022).
- J. Chem. Theory Comput. 7, 2166 (2011).
- M. Tsuchimoto and Y. Tanimura, J. Chem. Theory Comput. 11, 3859 (2015).
- J. Strümpfer and K. Schulten, J. Chem. Theory Comput. 8, 2808 (2012).
- Dm-heom: A portable and scalable solver-framework for the hierarchical equations of motion, in 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 947–956.
- Int. J. Quantum Chem. 120, e26373 (2020).
- Phys. Rev. Res. 5, 013181 (2023).
- Commun. Phys. 6, 313 (2023).
- Phys. Rev. Res. 5, 043177 (2023).
- WIREs Comput. Mol. Sci. 6, 608 (2016).
- Phys. Rev. B 90, 165116 (2014).
- Phys. Rev. B 91, 205106 (2015).
- Phys. Rev. B 94, 245105 (2016).
- J. Chem. Phys. 144, 034101 (2016).
- J. Chem. Phys. 151, 224704 (2019).
- J. Chem. Phys. 141, 084713 (2014).
- Phys. Rev. B 93, 125114 (2016).
- J. Chem. Phys. 145, 154301 (2016).
- Current Chinese Science 2, 310 (2022).
- JUSTC 53, 0302 (2023).
- Science 366, 623 (2019).
- Science 364, 670 (2019).
- Phys. Rev. Lett. 115, 016802 (2015).
- Phys. Rev. Res. 3, 043185 (2021).
- Nat. Nanotechnol. 9, 64 (2014).
- Nano Lett. 15, 4024 (2015).
- Nat. Commun. 8, 16012 (2017).
- Nat. Commun. 8, 1974 (2017).
- Science 350, 417 (2015).
- Nat. Chem. 14, 59 (2022).
- Science 382, 87 (2023).
- npj Quantum Inf. 9, 48 (2023).
- L. Kouwenhoven and L. Glazman, Physics World 14, 33 (2001).
- Science 309, 1542 (2005).
- J. Chem. Phys. 150, 184109 (2019).
- J. Chem. Phys. 158, 014106 (2023).
- Phys. Rev. B 88, 035129 (2013).
- J. Chem. Phys. 151, 024110 (2019).
- J. Chem. Phys. 152, 064107 (2020).
- J. Phys. Chem. Lett. 9, 2418 (2018).
- Nat. Commun. 11, 2566 (2020).
- J. Phys. Chem. Lett. 13, 2094 (2022).
- J. Phys. Chem. Lett. 13, 11262 (2022).
- Phys. Rep. 830, 1 (2019).
- Phys. Rev. B 103, 085411 (2021).
- J. Chem. Phys. 148, 234108 (2018).
- J. Chem. Phys. 133, 101106 (2010).
- T. Ozaki, Phys. Rev. B 75, 035123 (2007).
- J. Chem. Phys. 142, 104112 (2015).
- J. Chem. Phys. 157, 224107 (2022).
- Chin. J. Chem. Phys. 34, 905 (2021).
- J. Chem. Phys. 122, 041103 (2005).
- Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001 (2006).
- H.-D. Zhang and Y. Yan, J. Chem. Phys. 143, 214112 (2015).
- Y. Tanimura, J. Chem. Phys. 142, 144110 (2015).
- J. Chem. Phys. 129, 184112 (2008).
- New J. Phys. 10, 093016 (2008).
- Phys. Rev. Lett. 83, 808 (1999).
- R. W. Freund, SIAM J. Sci. Comput. 14, 470 (1993).
- J. Chem. Phys. 147, 044105 (2017).
- Phys. Rev. Lett. 109, 266403 (2012).
- J. Phys. Chem. C 123, 30754 (2019).
- Nat. Commun. 6, 8536 (2015).
- Science 328, 1370 (2010).
- Phys. Rev. Lett. 124, 167202 (2020).
- Phys. Chem. Chem. Phys. 20, 26396 (2018).
- Chemical Communications 54, 9135 (2018).
- A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism, Cambridge University Press, Cambridge, 1993.
- Phys. Rev. Lett. 98, 057201 (2007).
- Phys. Rev. Lett. 108, 230501 (2012).
- Nat. Commun. 5, 5304 (2014).
- L. Gu and R. Wu, Phys. Rev. Lett. 125, 117203 (2020).
- Science 329, 1628 (2010).
- Science 354, 96 (2016).
- Science 366, 509 (2019).
- Science 372, 964 (2021).
- P. Nozières and A. Blandin, J. Phys. France 41, 193 (1980).
- Phys. Rev. Lett. 103, 197202 (2009).
- R. Borrelli, J. Chem. Phys. 150, 234102 (2019).
- J. Chem. Phys. 154, 194104 (2021).
- R. Borrelli and M. F. Gelin, WIREs Comput. Mol. Sci. 11, e1539 (2021).
- Phys. Rev. B 107, 195429 (2023).
- Y. Ke, J. Chem. Phys. 158, 211102 (2023).
- G. Carleo and M. Troyer, Science 355, 602 (2017).
- Nat. Phys. 15, 887 (2019).
- M. J. Hartmann and G. Carleo, Phys. Rev. Lett. 122, 250502 (2019).
- Phys. Rev. Lett. 127, 230501 (2021).
- G. Torlai and R. G. Melko, Phys. Rev. Lett. 120, 240503 (2018).
- Phys. Rev. Lett. 127, 270503 (2021).
- J. Chem. Theory Comput. 19, 4851 (2023).
- Phys. Rev. Lett. 125, 010501 (2020).
- Phys. Rev. Res. 4, 013097 (2022).
- J. Chem. Phys. 149, 064106 (2018).
- Phys. Rev. Lett. 129, 230601 (2022).
- T. P. Fay, J. Chem. Phys. 157, 054108 (2022).