Entropy-based Probing Beam Selection and Beam Prediction via Deep Learning (2401.01609v1)
Abstract: Hierarchical beam search in mmWave communications incurs substantial training overhead, necessitating deep learning-enabled beam predictions to effectively leverage channel priors and mitigate this overhead. In this study, we introduce a comprehensive probabilistic model of power distribution in beamspace, and formulate the joint optimization problem of probing beam selection and probabilistic beam prediction as an entropy minimization problem. Then, we propose a greedy scheme to iteratively and alternately solve this problem, where a transformer-based beam predictor is trained to estimate the conditional power distribution based on the probing beams and user location within each iteration, and the trained predictor selects an unmeasured beam that minimizes the entropy of remaining beams. To further reduce the number of interactions and the computational complexity of the iterative scheme, we propose a two-stage probing beam selection scheme. Firstly, probing beams are selected from a location-specific codebook designed by an entropy-based criterion, and predictions are made with corresponding feedback. Secondly, the optimal beam is identified using additional probing beams with the highest predicted power values. Simulation results demonstrate the superiority of the proposed schemes compared to hierarchical beam search and beam prediction with uniform probing beams.
- F. Meng, Z. Cheng, Y. Huang, and Z. Lu, “Entropy-based probing beam selection and beam prediction via deep learning,” submitted to Proc. IEEE Int. Commun. Conf. (ICC): Wireless Commun. Symp., Denver, United States, June 2024.
- M. Xiao, S. Mumtaz, Y. Huang, L. Dai, Y. Li, M. Matthaiou, G. K. Karagiannidis, E. Björnson, K. Yang, C.-L. I, and A. Ghosh, “Millimeter wave communications for future mobile networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 1909–1935, 2017.
- S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and A. Ghosh, “Millimeter wave beamforming for wireless backhaul and access in small cell networks,” IEEE IEEE Trans. Commun., vol. 61, no. 10, pp. 4391–4403, 2013.
- J. Wang, Z. Lan, C. woo Pyo, T. Baykas, C. sean Sum, M. Rahman, J. Gao, R. Funada, F. Kojima, H. Harada, and S. Kato, “Beam codebook based beamforming protocol for multi-gbps millimeter-wave wpan systems,” IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1390–1399, 2009.
- J. Wang, Z. Lan, C.-S. Sum, C.-W. Pyo, J. Gao, T. Baykas, A. Rahman, R. Funada, F. Kojima, I. Lakkis, H. Harada, and S. Kato, “Beamforming codebook design and performance evaluation for 60ghz wideband wpans,” in 2009 IEEE 70th Veh. Technol. Conf. Fall, 2009, pp. 1–6.
- Z. Xiao, T. He, P. Xia, and X.-G. Xia, “Hierarchical codebook design for beamforming training in millimeter-wave communication,” IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3380–3392, 2016.
- A. Zappone, M. Di Renzo, and M. Debbah, “Wireless networks design in the era of deep learning: Model-based, AI-based, or both?” IEEE Trans. Commun., vol. 67, no. 10, pp. 7331–7376, 2019.
- H. He, S. Jin, C.-K. Wen, F. Gao, G. Y. Li, and Z. Xu, “Model-driven deep learning for physical layer communications,” IEEE Wireless Commun., vol. 26, no. 5, pp. 77–83, 2019.
- J. Zhang, G. Zheng, I. Krikidis, and R. Zhang, “Fast specific absorption rate aware beamforming for downlink SWIPT via deep learning,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 16 178–16 182, 2020.
- C. Xu, S. Liu, Z. Yang, Y. Huang, and K.-K. Wong, “Learning rate optimization for federated learning exploiting over-the-air computation,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3742–3756, 2021.
- J. Su, F. Meng, S. Liu, Y. Huang, and Z. Lu, “Learning to predict and optimize imperfect MIMO system performance: Framework and application,” in Proc. 41-th IEEE Global Commun. Conf. (GLOBECOM’22), 2022, pp. 335–340.
- J. Yang, S. Jin, C.-K. Wen, J. Guo, M. Matthaiou, and B. Gao, “Model-based learning network for 3-D localization in mmWave communications,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 5449–5466, 2021.
- S. Fan, Y. Wu, C. Han, and X. Wang, “SIABR: A structured intra-attention bidirectional recurrent deep learning method for ultra-accurate terahertz indoor localization,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 2226–2240, 2021.
- Z. Liu, M. del Rosario, and Z. Ding, “A markovian model-driven deep learning framework for massive mimo csi feedback,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 1214–1228, 2022.
- J. Guo, C.-K. Wen, S. Jin, and G. Y. Li, “Overview of deep learning-based csi feedback in massive mimo systems,” IEEE IEEE Trans. Commun., vol. 70, no. 12, pp. 8017–8045, 2022.
- J. Zhang, Y. Huang, Y. Zhou, and X. You, “Beam alignment and tracking for millimeter wave communications via bandit learning,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5519–5533, 2020.
- J. Zhang, Y. Huang, J. Wang, X. You, and C. Masouros, “Intelligent interactive beam training for millimeter wave communications,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 2034–2048, 2021.
- F. Meng, S. Liu, Y. Huang, and Z. Lu, “Learning-aided beam prediction in mmWave MU-MIMO systems for high-speed railway,” IEEE Trans. Commun., vol. 70, no. 1, pp. 693–706, 2022.
- K. Ma, Z. Wang, W. Tian, S. Chen, and L. Hanzo, “Deep learning for mmwave beam-management: State-of-the-art, opportunities and challenges,” IEEE Wireless Commun., pp. 1–8, 2022.
- R. Yang, Z. Zhang, X. Zhang, C. Li, Y. Huang, and L. Yang, “Meta-learning for beam prediction in a dual-band communication system,” IEEE IEEE Trans. Commun., vol. 71, no. 1, pp. 145–157, 2023.
- W. He, C. Zhang, Y. Huang, and X. You, “Intelligent optimization of base station array orientations via scenario-specific modeling,” IEEE Trans. Commun., vol. 70, no. 3, pp. 2117–2130, 2022.
- A. Ali, N. González-Prelcic, and R. W. Heath, “Millimeter wave beam-selection using out-of-band spatial information,” IEEE Trans. Wireless Commun., vol. 17, no. 2, pp. 1038–1052, 2018.
- W. Xu, F. Gao, X. Tao, J. Zhang, and A. Alkhateeb, “Computer vision aided mmwave beam alignment in v2x communications,” IEEE Trans. Wireless Commun., pp. 1–1, 2022.
- H.-L. Song and Y.-C. Ko, “Beam alignment for high-speed uav via angle prediction and adaptive beam coverage,” IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 10 185–10 192, 2021.
- M. Hussain and N. Michelusi, “Learning and adaptation for millimeter-wave beam tracking and training: A dual timescale variational framework,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 37–53, 2022.
- K. Ma, F. Zhang, W. Tian, and Z. Wang, “Continuous-time mmwave beam prediction with ode-lstm learning architecture,” IEEE Wireless Commun. Letters, vol. 12, no. 1, pp. 187–191, 2023.
- S. H. A. Shah and S. Rangan, “Multi-cell multi-beam prediction using auto-encoder lstm for mmwave systems,” IEEE Trans. Wireless Commun., vol. 21, no. 12, pp. 10 366–10 380, 2022.
- M. Alrabeiah and A. Alkhateeb, “Deep learning for mmwave beam and blockage prediction using sub-6 ghz channels,” IEEE IEEE Trans. Commun., vol. 68, no. 9, pp. 5504–5518, 2020.
- F. Gao, B. Lin, C. Bian, T. Zhou, J. Qian, and H. Wang, “Fusionnet: Enhanced beam prediction for mmwave communications using sub-6 ghz channel and a few pilots,” IEEE IEEE Trans. Commun., vol. 69, no. 12, pp. 8488–8500, 2021.
- K. Ma, S. Du, H. Zou, W. Tian, Z. Wang, and S. Chen, “Deep learning assisted mmwave beam prediction for heterogeneous networks: A dual-band fusion approach,” IEEE IEEE Trans. Commun., vol. 71, no. 1, pp. 115–130, 2023.
- J. A. del Peral-Rosado, R. Raulefs, J. A. López-Salcedo, and G. Seco-Granados, “Survey of cellular mobile radio localization methods: From 1G to 5G,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 1124–1148, 2018.
- H. Wymeersch, G. Seco-Granados, G. Destino, D. Dardari, and F. Tufvesson, “5G mmwave positioning for vehicular networks,” IEEE Wireless Commun., vol. 24, no. 6, pp. 80–86, 2017.
- Y. Zeng and X. Xu, “Toward environment-aware 6g communications via channel knowledge map,” IEEE Wireless Commun., vol. 28, no. 3, pp. 84–91, 2021.
- K. Satyanarayana, M. El-Hajjar, A. A. M. Mourad, and L. Hanzo, “Deep learning aided fingerprint-based beam alignment for mmWave vehicular communication,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 10 858–10 871, 2019.
- T.-H. Chou, N. Michelusi, D. J. Love, and J. V. Krogmeier, “Fast position-aided mimo beam training via noisy tensor completion,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 3, pp. 774–788, 2021.
- J. Zhang and C. Masouros, “Learning-based predictive transmitter-receiver beam alignment in millimeter wave fixed wireless access links,” IEEE Trans. Signal Process., vol. 69, pp. 3268–3282, 2021.
- W. Xu, Y. Ke, C.-H. Lee, H. Gao, Z. Feng, and P. Zhang, “Data-driven beam management with angular domain information for mmwave uav networks,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7040–7056, 2021.
- C. Zhang, M. Wang, W. He, L. Zhang, and Y. Huang, “Channel beam pattern extension for massive MIMO via deep gaussian process regression,” in 2021 IEEE/CIC Int. Conf. Commun. China (ICCC), 2021, pp. 172–177.
- Y. Heng and J. G. Andrews, “Machine learning-assisted beam alignment for mmWave systems,” in 2019 IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA, 2019.
- W. Xu, F. Gao, S. Jin, and A. Alkhateeb, “3D scene-based beam selection for mmWave communications,” IEEE Wireless Commun. Lett., vol. 9, no. 11, pp. 1850–1854, 2020.
- Y. Heng, J. Mo, and J. G. Andrews, “Learning site-specific probing beams for fast mmwave beam alignment,” IEEE Trans. Wireless Commun., vol. 21, no. 8, pp. 5785–5800, 2022.
- 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz,” 3GPP TR 38.901, Jan. 2020, version 16.1.0.
- M. L. Eaton, “Multivariate statistics: a vector space approach,” JOHN WILEY & SONS, INC., 605 THIRD AVE., NEW YORK, NY 10158, USA, 1983.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30, 2017.
- WinProp, “Wave propagation and radio network planning software (part of altair hyperworks).” [Online]. Available: https://www.altair.com/