Papers
Topics
Authors
Recent
2000 character limit reached

Proposal for many-body quantum chaos detection

Published 2 Jan 2024 in cond-mat.stat-mech and quant-ph | (2401.01401v4)

Abstract: In this work, the term ``quantum chaos'' refers to spectral correlations similar to those found in the random matrix theory. Quantum chaos can be diagnosed through the analysis of level statistics using e.g.~the spectral form factor, which detects both short- and long-range level correlations. The spectral form factor corresponds to the Fourier transform of the two-point spectral correlation function and exhibits a typical slope-dip-ramp-plateau structure (aka correlation hole) when the system is chaotic. We discuss how this structure could be detected through the quench dynamics of two physical quantities accessible to experimental many-body quantum systems: the survival probability and the spin autocorrelation function. The survival probability is equivalent to the spectral form factor with an additional filter. When the system is small, the dip of the correlation hole reaches sufficiently large values at times which are short enough to be detected with current experimental platforms. As the system is pushed away from chaos, the correlation hole disappears, signaling integrability or localization. We also provide a relatively shallow circuit with which the correlation hole could be detected with commercially available quantum computers.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.