Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The predictive power of the Blockhain transaction networks: Towards a new generation of network science market indicators (2401.01379v1)

Published 31 Dec 2023 in cs.SI and cs.CE

Abstract: Currently cryptocurrencies and Decentralized Finance (DeFi), which enable financial services on public blockchains, represents a new growing trend in finance. In contrast to financial markets, ruled by traditional corporations, DeFi is completely transparent as it keeps records of all transactions that occur in the network and makes them publicly available. The availability of the data represents an opportunity to analyze and understand the market from the complexity that emerges from the interactions of the actors (users, bots and companies) operating in the embedded market. In this paper we focus on the Ethereum network and our main goal is to show that the properties of the underlying transaction network provide further and useful information to forecast the evolution of the market. We aim to separate the non redundant effects of the blockchain transaction network properties from classic technical indicators and social media trends in the future price of Ethereum. To this end, we build two machine learning models to predict the future trend of the market. The first one serves as a base model and considers a set of the most relevant features according to the current scientific literature including technical indicators and social media trends. The second model considers the features of the base model, together with the network properties computed from the transaction networks. We found that the full model outperforms the base model and can anticipate 46 more rises in the price than the base model and 19 more falls.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. C.-H. Park and S. H. Irwin,   (2004).
  2. D. P. Brown and R. H. Jennings, The Review of Financial Studies 2, 527 (1989).
  3. J. L. Treynor and R. Ferguson, The Journal of Finance 40, 757 (1985).
  4. R. C. Phillips and D. Gorse, in 2017 IEEE symposium series on computational intelligence (SSCI) (IEEE, 2017) pp. 1–7.
  5. A.-L. Barabási, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, 20120375 (2013).
  6. A.-L. Barabási, Cambridge MA. Perseus  (2002).
  7. S. H. Strogatz, nature 410, 268 (2001).
  8. J. Foster, Cambridge Journal of Economics 29, 873 (2005).
  9. Z. D. Liang J, Li L, PLoS ONE 13 (2019).
  10. E. F. Fama, The journal of Finance 25, 383 (1970).
  11. E. F. Fama, The journal of finance 46, 1575 (1991).
  12. M. T. Greene and B. D. Fielitz, Journal of Financial Economics 4, 339 (1977).
  13. F. Lillo and J. D. Farmer, Studies in nonlinear dynamics & econometrics 8 (2004).
  14. B. Jacobsen, Journal of empirical finance 3, 393 (1996).
  15. A. W. Lo and A. C. MacKinlay, A non-random walk down Wall Street (Princeton University Press, 2011).
  16. M. E. Newman, Physical review letters 89, 208701 (2002).
  17. D. J. Watts and S. H. Strogatz, nature 393, 440 (1998).
  18. M. de Prado, Advances in Financial Machine Learning (Wiley, 2018).
  19. T. Chen and C. Guestrin, in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (2016) pp. 785–794.

Summary

We haven't generated a summary for this paper yet.