Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explainable Adaptive Tree-based Model Selection for Time Series Forecasting (2401.01124v1)

Published 2 Jan 2024 in cs.LG and cs.AI

Abstract: Tree-based models have been successfully applied to a wide variety of tasks, including time series forecasting. They are increasingly in demand and widely accepted because of their comparatively high level of interpretability. However, many of them suffer from the overfitting problem, which limits their application in real-world decision-making. This problem becomes even more severe in online-forecasting settings where time series observations are incrementally acquired, and the distributions from which they are drawn may keep changing over time. In this context, we propose a novel method for the online selection of tree-based models using the TreeSHAP explainability method in the task of time series forecasting. We start with an arbitrary set of different tree-based models. Then, we outline a performance-based ranking with a coherent design to make TreeSHAP able to specialize the tree-based forecasters across different regions in the input time series. In this framework, adequate model selection is performed online, adaptively following drift detection in the time series. In addition, explainability is supported on three levels, namely online input importance, model selection, and model output explanation. An extensive empirical study on various real-world datasets demonstrates that our method achieves excellent or on-par results in comparison to the state-of-the-art approaches as well as several baselines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. R. Godahewa, C. Bergmeir, G. I. Webb, R. J. Hyndman, and P. Montero-Manso, “Monash time series forecasting archive,” in Neural Information Processing Systems Track on Datasets and Benchmarks, 2021, forthcoming.
  2. R. J. Hyndman, A. B. Koehler, R. D. Snyder, and S. Grose, “A state space framework for automatic forecasting using exponential smoothing methods,” International Journal of forecasting, vol. 18, no. 3, pp. 439–454, 2002.
  3. A. Saadallah, L. Moreira-Matias, R. Sousa, J. Khiari, E. Jenelius, and J. Gama, “Bright-drift-aware demand predictions for taxi networks,” IEEE Transactions on Knowledge and Data Engineering, 2018.
  4. J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on concept drift adaptation,” ACM computing surveys (CSUR), vol. 46, no. 4, pp. 1–37, 2014.
  5. R. J. Hyndman, E. Wang, and N. Laptev, “Large-scale unusual time series detection,” in 2015 IEEE international conference on data mining workshop (ICDMW).   IEEE, 2015, pp. 1616–1619.
  6. A. Saadallah, F. Priebe, and K. Morik, “A drift-based dynamic ensemble members selection using clustering for time series forecasting,” in Joint European conference on machine learning and knowledge discovery in databases.   Springer, 2019.
  7. V. Cerqueira, L. Torgo, F. Pinto, and C. Soares, “Arbitrated ensemble for time series forecasting,” in Joint European conference on machine learning and knowledge discovery in databases.   Springer, 2017, pp. 478–494.
  8. D. H. Wolpert, “The lack of a priori distinctions between learning algorithms,” Neural computation, vol. 8, no. 7, pp. 1341–1390, 1996.
  9. A. Saadallah, L. Moreira-Matias, R. Sousa, J. Khiari, E. Jenelius, and J. Gama, “Bright—drift-aware demand predictions for taxi networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 2, pp. 234–245, 2020.
  10. F. Priebe, “Dynamic model selection for automated machine learning in time series,” 2019.
  11. A. Saadallah, M. Jakobs, and K. Morik, “Explainable online deep neural network selection using adaptive saliency maps for time series forecasting,” in Machine Learning and Knowledge Discovery in Databases. Research Track, N. Oliver, F. Pérez-Cruz, S. Kramer, J. Read, and J. A. Lozano, Eds.   Cham: Springer International Publishing, 2021, pp. 404–420.
  12. ——, “Explainable online ensemble of deep neural network pruning for time series forecasting,” Machine Learning, vol. 111, no. 9, 2022.
  13. S. B. Taieb and R. J. Hyndman, “A gradient boosting approach to the kaggle load forecasting competition,” International journal of forecasting, vol. 30, no. 2, pp. 382–394, 2014.
  14. I. Ilic, B. Görgülü, M. Cevik, and M. G. Baydoğan, “Explainable boosted linear regression for time series forecasting,” Pattern Recognition, vol. 120, p. 108144, 2021.
  15. L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.
  16. J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals of statistics, pp. 1189–1232, 2001.
  17. A. Galicia, R. Talavera-Llames, A. Troncoso, I. Koprinska, and F. Martínez-Álvarez, “Multi-step forecasting for big data time series based on ensemble learning,” Knowledge-Based Systems, vol. 163, pp. 830–841, 2019.
  18. V. Cerqueira, L. Torgo, F. Pinto, and C. Soares, “Arbitrage of forecasting experts,” Machine Learning, 2018.
  19. Y. Liang, S. Li, C. Yan, M. Li, and C. Jiang, “Explaining the black-box model: A survey of local interpretation methods for deep neural networks,” Neurocomputing, vol. 419, pp. 168–182, 2021.
  20. A. Saadallah and K. Morik, “Active sampling for learning interpretable surrogate machine learning models,” in 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA).   IEEE, 2020, pp. 264–272.
  21. S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee, “From local explanations to global understanding with explainable AI for trees,” vol. 2, pp. 56–67, 2020. [Online]. Available: https://www.nature.com/articles/s42256-019-0138-9
  22. L. Birgé and P. Massart, “Gaussian model selection,” Journal of the European Mathematical Society, vol. 3, no. 3, pp. 203–268, 2001.
  23. R. Argiento, A. Guglielmi, and A. Pievatolo, “Bayesian density estimation and model selection using nonparametric hierarchical mixtures,” Computational Statistics & Data Analysis, vol. 54, no. 4, pp. 816–832, 2010.
  24. I. Rivals and L. Personnaz, “On cross validation for model selection,” Neural computation, vol. 11, no. 4, pp. 863–870, 1999.
  25. D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2, pp. 241–259, 1992.
  26. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE international conference on computer vision, 2017.
  27. R. Assaf and A. Schumann, “Explainable deep neural networks for multivariate time series predictions.” in IJCAI, 2019, pp. 6488–6490.
  28. L. S. Shapley, “A value for n-person games,” vol. 2, no. 28, pp. 307–317, 1953.
  29. G. Jain and B. Mallick. A Study of Time Series Models ARIMA and ETS. [Online]. Available: https://papers.ssrn.com/abstract=2898968
  30. P. Romeu, F. Zamora-Martínez, P. Botella-Rocamora, and J. Pardo, “Time-Series Forecasting of Indoor Temperature Using Pre-trained Deep Neural Networks,” in Artificial Neural Networks and Machine Learning – ICANN 2013, ser. Lecture Notes in Computer Science, V. Mladenov, P. Koprinkova-Hristova, G. Palm, A. E. P. Villa, B. Appollini, and N. Kasabov, Eds.   Springer, 2013, pp. 451–458.
  31. A. Benavoli, G. Corani, and F. Mangili, “Should we really use post-hoc tests based on mean-ranks?” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 152–161, 2016.
  32. B. Kim, R. Khanna, and O. O. Koyejo, “Examples are not enough, learn to criticize! criticism for interpretability,” Advances in neural information processing systems, vol. 29, 2016.
  33. S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,” in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.   Curran Associates, Inc., 2017, pp. 4765–4774. [Online]. Available: http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
Citations (3)

Summary

We haven't generated a summary for this paper yet.