Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual Teacher Knowledge Distillation with Domain Alignment for Face Anti-spoofing (2401.01102v1)

Published 2 Jan 2024 in cs.CV

Abstract: Face recognition systems have raised concerns due to their vulnerability to different presentation attacks, and system security has become an increasingly critical concern. Although many face anti-spoofing (FAS) methods perform well in intra-dataset scenarios, their generalization remains a challenge. To address this issue, some methods adopt domain adversarial training (DAT) to extract domain-invariant features. However, the competition between the encoder and the domain discriminator can cause the network to be difficult to train and converge. In this paper, we propose a domain adversarial attack (DAA) method to mitigate the training instability problem by adding perturbations to the input images, which makes them indistinguishable across domains and enables domain alignment. Moreover, since models trained on limited data and types of attacks cannot generalize well to unknown attacks, we propose a dual perceptual and generative knowledge distillation framework for face anti-spoofing that utilizes pre-trained face-related models containing rich face priors. Specifically, we adopt two different face-related models as teachers to transfer knowledge to the target student model. The pre-trained teacher models are not from the task of face anti-spoofing but from perceptual and generative tasks, respectively, which implicitly augment the data. By combining both DAA and dual-teacher knowledge distillation, we develop a dual teacher knowledge distillation with domain alignment framework (DTDA) for face anti-spoofing. The advantage of our proposed method has been verified through extensive ablation studies and comparison with state-of-the-art methods on public datasets across multiple protocols.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep face recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 4690–4699.
  2. T. de Freitas Pereira, A. Anjos, J. M. De Martino, and S. Marcel, “Can face anti-spoofing countermeasures work in a real world scenario?” in Proceedings of the International Conference on Biometrics.   IEEE, 2013, pp. 1–8.
  3. J. Yang, Z. Lei, S. Liao, and S. Z. Li, “Face liveness detection with component dependent descriptor,” in Proceedings of the International Conference on Biometrics.   IEEE, 2013, pp. 1–6.
  4. K. Patel, H. Han, and A. K. Jain, “Secure face unlock: Spoof detection on smartphones,” IEEE Transactions on Information Forensics and Security, vol. 11, no. 10, pp. 2268–2283, 2016.
  5. Z. Boulkenafet, J. Komulainen, and A. Hadid, “Face antispoofing using speeded-up robust features and fisher vector encoding,” IEEE Signal Processing Letters, vol. 24, no. 2, pp. 141–145, 2016.
  6. G. Wang, H. Han, S. Shan, and X. Chen, “Cross-domain face presentation attack detection via multi-domain disentangled representation learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 6678–6687.
  7. Z. Yu, C. Zhao, Z. Wang, Y. Qin, Z. Su, X. Li, F. Zhou, and G. Zhao, “Searching central difference convolutional networks for face anti-spoofing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 5295–5305.
  8. J. Määttä, A. Hadid, and M. Pietikäinen, “Face spoofing detection from single images using micro-texture analysis,” in Proceedings of the International Joint Conference on Biometrics.   IEEE, 2011, pp. 1–7.
  9. D. Wen, H. Han, and A. K. Jain, “Face spoof detection with image distortion analysis,” IEEE Transactions on Information Forensics and Security, vol. 10, no. 4, pp. 746–761, 2015.
  10. Y. Liu, A. Jourabloo, and X. Liu, “Learning deep models for face anti-spoofing: Binary or auxiliary supervision,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2018.
  11. Z. Wang, Z. Wang, Z. Yu, W. Deng, J. Li, T. Gao, and Z. Wang, “Domain generalization via shuffled style assembly for face anti-spoofing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2022, pp. 4123–4133.
  12. R. Shao, X. Lan, J. Li, and P. C. Yuen, “Multi-adversarial discriminative deep domain generalization for face presentation attack detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 10 023–10 031.
  13. Y. Qin, C. Zhao, X. Zhu, Z. Wang, Z. Yu, T. Fu, F. Zhou, J. Shi, and Z. Lei, “Learning meta model for zero-and few-shot face anti-spoofing,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 11 916–11 923.
  14. R. Shao, X. Lan, and P. C. Yuen, “Regularized fine-grained meta face anti-spoofing,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 11 974–11 981.
  15. X. Guo, Y. Liu, A. Jain, and X. Liu, “Multi-domain learning for updating face anti-spoofing models,” in Proceedings of the European Conference on Computer Vision.   Springer, 2022, pp. 230–249.
  16. Y. Sun, Y. Liu, X. Liu, Y. Li, and W.-S. Chu, “Rethinking domain generalization for face anti-spoofing: Separability and alignment,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2023, pp. 24 563–24 574.
  17. Y. Liu, Y. Chen, M. Gou, C.-T. Huang, Y. Wang, W. Dai, and H. Xiong, “Towards unsupervised domain generalization for face anti-spoofing,” in IEEE International Conference on Computer Vision, 2023, pp. 20 654–20 664.
  18. W. Yan, Y. Zeng, and H. Hu, “Domain adversarial disentanglement network with cross-domain synthesis for generalized face anti-spoofing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 10, pp. 7033–7046, 2022.
  19. Y. Jia, J. Zhang, S. Shan, and X. Chen, “Single-side domain generalization for face anti-spoofing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2020.
  20. Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” in Proceedings of the International Conference on Machine Learning.   PMLR, 2015, pp. 1180–1189.
  21. Y. Zhang, X. Wang, J. Liang, Z. Zhang, L. Wang, R. Jin, and T. Tan, “Free lunch for domain adversarial training: Environment label smoothing,” arXiv preprint arXiv:2302.00194, 2023.
  22. G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint arXiv:1503.02531, 2015.
  23. F. Liu, Z. Kong, H. Liu, W. Zhang, and L. Shen, “Fingerprint presentation attack detection by channel-wise feature denoising,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 2963–2976, 2022.
  24. S.-Q. Liu, X. Lan, and P. C. Yuen, “Remote photoplethysmography correspondence feature for 3d mask face presentation attack detection,” in Proceedings of the European Conference on Computer Vision, September 2018.
  25. S. Liu, P. C. Yuen, S. Zhang, and G. Zhao, “3d mask face anti-spoofing with remote photoplethysmography,” in Proceedings of the European Conference on Computer Vision.   Springer, 2016, pp. 85–100.
  26. Z. Yu, X. Li, X. Niu, J. Shi, and G. Zhao, “Face anti-spoofing with human material perception,” in Proceedings of the European Conference on Computer Vision.   Springer, 2020, pp. 557–575.
  27. X. Yang, W. Luo, L. Bao, Y. Gao, D. Gong, S. Zheng, Z. Li, and W. Liu, “Face anti-spoofing: Model matters, so does data,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3507–3516.
  28. W. Zhang, H. Liu, F. Liu, R. Ramachandra, and C. Busch, “Effective presentation attack detection driven by face related task,” in Proceedings of the European Conference on Computer Vision.   Springer, 2022, pp. 408–423.
  29. H. Wu, D. Zeng, Y. Hu, H. Shi, and T. Mei, “Dual spoof disentanglement generation for face anti-spoofing with depth uncertainty learning,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 7, pp. 4626–4638, 2021.
  30. S. R. Arashloo, “Unseen face presentation attack detection using sparse multiple kernel fisher null-space,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 4084–4095, 2020.
  31. Z. Yu, J. Wan, Y. Qin, X. Li, S. Z. Li, and G. Zhao, “Nas-fas: Static-dynamic central difference network search for face anti-spoofing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 9, pp. 3005–3023, 2020.
  32. Y. Liu, J. Stehouwer, and X. Liu, “On disentangling spoof trace for generic face anti-spoofing,” in Proceedings of the European Conference on Computer Vision.   Springer, 2020, pp. 406–422.
  33. K.-Y. Zhang, T. Yao, J. Zhang, Y. Tai, S. Ding, J. Li, F. Huang, H. Song, and L. Ma, “Face anti-spoofing via disentangled representation learning,” in Proceedings of the European Conference on Computer Vision.   Springer, 2020, pp. 641–657.
  34. Z. Chen, T. Yao, K. Sheng, S. Ding, Y. Tai, J. Li, F. Huang, and X. Jin, “Generalizable representation learning for mixture domain face anti-spoofing,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 2, 2021, pp. 1132–1139.
  35. Y. Qin, Z. Yu, L. Yan, Z. Wang, C. Zhao, and Z. Lei, “Meta-teacher for face anti-spoofing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 6311–6326, 2021.
  36. J. Wang, J. Zhang, Y. Bian, Y. Cai, C. Wang, and S. Pu, “Self-domain adaptation for face anti-spoofing,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, 2021, pp. 2746–2754.
  37. Z. Kong, W. Zhang, F. Liu, W. Luo, H. Liu, L. Shen, and R. Ramachandra, “Taming self-supervised learning for presentation attack detection: De-folding and de-mixing,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–12, 2023.
  38. C.-Y. Wang, Y.-D. Lu, S.-T. Yang, and S.-H. Lai, “Patchnet: A simple face anti-spoofing framework via fine-grained patch recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022, pp. 20 281–20 290.
  39. Z. Wang, Z. Yu, X. Wang, Y. Qin, J. Li, C. Zhao, X. Liu, and Z. Lei, “Consistency regularization for deep face anti-spoofing,” IEEE Transactions on Information Forensics and Security, 2023.
  40. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.
  41. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.
  42. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.
  43. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in Proceedings of the IEEE Symposium on Security and Privacy.   IEEE, 2017, pp. 39–57.
  44. Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial attacks with momentum,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9185–9193.
  45. S. Zagoruyko and N. Komodakis, “Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer,” arXiv preprint arXiv:1612.03928, 2016.
  46. W. Park, D. Kim, Y. Lu, and M. Cho, “Relational knowledge distillation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3967–3976.
  47. F. Tung and G. Mori, “Similarity-preserving knowledge distillation,” in Proceedings of the International Conference on Computer Vision, 2019, pp. 1365–1374.
  48. A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, “Fitnets: Hints for thin deep nets,” arXiv preprint arXiv:1412.6550, 2014.
  49. Y. Tian, D. Krishnan, and P. Isola, “Contrastive representation distillation,” arXiv preprint arXiv:1910.10699, 2019.
  50. Q. Zhao, S. Lyu, L. Chen, B. Liu, T.-B. Xu, G. Cheng, and W. Feng, “Learn by oneself: Exploiting weight-sharing potential in knowledge distillation guided ensemble network,” IEEE Transactions on Circuits and Systems for Video Technology, 2023.
  51. X. Zhang, X. Wang, and P. Cheng, “Unsupervised hashing retrieval via efficient correlation distillation,” IEEE Transactions on Circuits and Systems for Video Technology, 2023.
  52. B. Heo, J. Kim, S. Yun, H. Park, N. Kwak, and J. Y. Choi, “A comprehensive overhaul of feature distillation,” in Proceedings of the International Conference on Computer Vision, 2019, pp. 1921–1930.
  53. H. Li, S. Wang, P. He, and A. Rocha, “Face anti-spoofing with deep neural network distillation,” IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 5, pp. 933–946, 2020.
  54. Z. Li, R. Cai, H. Li, K.-Y. Lam, Y. Hu, and A. C. Kot, “One-class knowledge distillation for face presentation attack detection,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 2137–2150, 2022.
  55. Y. Liu, J. Cao, B. Li, W. Hu, J. Ding, and L. Li, “Cross-architecture knowledge distillation,” in Proceedings of the Asian Conference on Computer Vision, 2022, pp. 3396–3411.
  56. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  57. Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 12, pp. 5586–5609, 2021.
  58. Z. Boulkenafet, J. Komulainen, L. Li, X. Feng, and A. Hadid, “Oulu-npu: A mobile face presentation attack database with real-world variations,” in Proceedings of the IEEE International Conference on Automatic Face & Gesture Recognition.   IEEE, 2017, pp. 612–618.
  59. Z. Zhang, J. Yan, S. Liu, Z. Lei, D. Yi, and S. Z. Li, “A face antispoofing database with diverse attacks,” in Proceedings of the International Conference on Biometrics.   IEEE, 2012, pp. 26–31.
  60. I. Chingovska, A. Anjos, and S. Marcel, “On the effectiveness of local binary patterns in face anti-spoofing,” in Proceedings of the International Conference of Biometrics Special Interest Group.   IEEE, 2012, pp. 1–7.
  61. Y. Zhang, Z. Yin, Y. Li, G. Yin, J. Yan, J. Shao, and Z. Liu, “Celeba-spoof: Large-scale face anti-spoofing dataset with rich annotations,” in Proceedings of the European Conference on Computer Vision, 2020, pp. 70–85.
  62. K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using multitask cascaded convolutional networks,” IEEE Signal Processing Letters, vol. 23, no. 10, pp. 1499–1503, 2016.
  63. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
  64. Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Stargan: Unified generative adversarial networks for multi-domain image-to-image translation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8789–8797.
  65. S. Liu, K.-Y. Zhang, T. Yao, K. Sheng, S. Ding, Y. Tai, J. Li, Y. Xie, and L. Ma, “Dual reweighting domain generalization for face presentation attack detection,” arXiv preprint arXiv:2106.16128, 2021.
  66. J. Wang, Z. Zhao, W. Jin, X. Duan, Z. Lei, B. Huai, Y. Wu, and X. He, “Vlad-vsa: cross-domain face presentation attack detection with vocabulary separation and adaptation,” in Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 1497–1506.
  67. S. Liu, K.-Y. Zhang, T. Yao, M. Bi, S. Ding, J. Li, F. Huang, and L. Ma, “Adaptive normalized representation learning for generalizable face anti-spoofing,” in Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 1469–1477.
  68. Q. Zhou, K.-Y. Zhang, T. Yao, R. Yi, K. Sheng, S. Ding, and L. Ma, “Generative domain adaptation for face anti-spoofing,” in Proceedings of the European Conference on Computer Vision.   Springer, 2022, pp. 335–356.
  69. Y. Zhang, Y. Wu, Z. Yin, J. Shao, and Z. Liu, “Robust face anti-spoofing with dual probabilistic modeling,” arXiv preprint arXiv:2204.12685, 2022.
  70. L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of Machine Learning Research, vol. 9, no. 11, 2008.
  71. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 618–626.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Zhe Kong (7 papers)
  2. Wentian Zhang (14 papers)
  3. Tao Wang (700 papers)
  4. Kaihao Zhang (55 papers)
  5. Yuexiang Li (50 papers)
  6. Xiaoying Tang (74 papers)
  7. Wenhan Luo (88 papers)

Summary

We haven't generated a summary for this paper yet.