Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Agricultural 4.0 Leveraging on Technological Solutions: Study for Smart Farming Sector (2401.00814v1)

Published 1 Jan 2024 in cs.HC and cs.CY

Abstract: By 2050, it is predicted that there will be 9 billion people on the planet, which will call for more production, lower costs, and the preservation of natural resources. It is anticipated that atypical occurrences and climate change will pose severe risks to agricultural output. It follows that a 70% or more significant rise in food output is anticipated. Smart farming, often known as agriculture 4.0, is a tech-driven revolution in agriculture with the goal of raising industry production and efficiency. Four primary trends are responsible for it: food waste, climate change, population shifts, and resource scarcity. The agriculture industry is changing as a result of the adoption of emerging technologies. Using cutting-edge technology like IoT, AI, and other sensors, smart farming transforms traditional production methods and international agricultural policies. The objective is to establish a value chain that is optimized to facilitate enhanced monitoring and decreased labor expenses. The agricultural sector has seen tremendous transformation as a result of the fourth industrial revolution, which has combined traditional farming methods with cutting-edge technology to increase productivity, sustainability, and efficiency. To effectively utilize the potential of technology gadgets in the agriculture sector, collaboration between governments, private sector entities, and other stakeholders is necessary. This paper covers Agriculture 4.0, looks at its possible benefits and drawbacks of the implementation methodologies, compatibility, reliability, and investigates the several digital tools that are being utilized to change the agriculture industry and how to mitigate the challenges.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. V. U. Tjhin and R. E. Riantini, “Smart farming: Implementation of industry 4.0 in the agricultural sector,” in Proceedings of the 6th International Conference on E-Commerce, E-Business and E-Government, pp. 416–421, 2022.
  2. S. O. Araújo, R. S. Peres, J. Barata, F. Lidon, and J. C. Ramalho, “Characterising the agriculture 4.0 landscape—emerging trends, challenges and opportunities,” Agronomy, vol. 11, no. 4, p. 667, 2021.
  3. F. da Silveira, F. H. Lermen, and F. G. Amaral, “An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages,” Computers and electronics in agriculture, vol. 189, p. 106405, 2021.
  4. M. De Clercq, A. Vats, and A. Biel, “Agriculture 4.0: The future of farming technology,” Proceedings of the world government summit, Dubai, UAE, pp. 11–13, 2018.
  5. D. Albiero, R. L. d. Paulo, J. C. Félix Junior, J. d. S. G. Santos, and R. P. Melo, “Agriculture 4.0: a terminological introduction,” Revista Ciência Agronômica, vol. 51, 2021.
  6. M. Gupta, M. Abdelsalam, S. Khorsandroo, and S. Mittal, “Security and privacy in smart farming: Challenges and opportunities,” IEEE access, vol. 8, pp. 34564–34584, 2020.
  7. I. Charania and X. Li, “Smart farming: Agriculture’s shift from a labor intensive to technology native industry,” Internet of Things, vol. 9, p. 100142, 2020.
  8. R. Beluhova-Uzunova and D. Dunchev, “Agriculture 4.0–concepts, technologies and prospects,” Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, vol. 22, pp. 97–104, 2022.
  9. Y. Liu, X. Ma, L. Shu, G. P. Hancke, and A. M. Abu-Mahfouz, “From industry 4.0 to agriculture 4.0: Current status, enabling technologies, and research challenges,” IEEE Transactions on Industrial Informatics, vol. 17, no. 6, pp. 4322–4334, 2020.
  10. R. Bertoglio, C. Corbo, F. M. Renga, and M. Matteucci, “The digital agricultural revolution: a bibliometric analysis literature review,” IEEE Access, vol. 9, pp. 134762–134782, 2021.
  11. Z. F. Abdalla and H. El-Ramady, “Applications and challenges of smart farming for developing sustainable agriculture,” Environment, Biodiversity and Soil Security, vol. 6, no. 2022, pp. 81–90, 2022.
  12. F. da Silveira and F. Amaral, “Agriculture 4.0. encyclopedia of smart agriculture technologies (2022).”
  13. A. A. AlZubi and K. Galyna, “Artificial intelligence and internet of things for sustainable farming and smart agriculture,” IEEE Access, 2023.
  14. D. C. Rose, R. Wheeler, M. Winter, M. Lobley, and C.-A. Chivers, “Agriculture 4.0: Making it work for people, production, and the planet,” Land use policy, vol. 100, p. 104933, 2021.
  15. A. Monteiro, S. Santos, and P. Gonçalves, “Precision agriculture for crop and livestock farming—brief review,” Animals, vol. 11, no. 8, p. 2345, 2021.
  16. M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan, and R. Kaliaperumal, “Smart farming: Internet of things (iot)-based sustainable agriculture,” Agriculture, vol. 12, no. 10, p. 1745, 2022.
  17. D. Han, “Big data analytics, data science, ml&ai for connected, data-driven precision agriculture and smart farming systems: Challenges and future directions,” in Proceedings of Cyber-Physical Systems and Internet of Things Week 2023, pp. 378–384, 2023.
  18. A. Sharma, A. Jain, P. Gupta, and V. Chowdary, “Machine learning applications for precision agriculture: A comprehensive review,” IEEE Access, vol. 9, pp. 4843–4873, 2020.
  19. S. De Alwis, Z. Hou, Y. Zhang, M. H. Na, B. Ofoghi, and A. Sajjanhar, “A survey on smart farming data, applications and techniques,” Computers in Industry, vol. 138, p. 103624, 2022.
  20. I. Kovalev, D. Kovalev, K. Astanakulov, V. Podoplelova, D. Borovinsky, and S. Efa, “Conceptual basis for digitalization of specifications of transport and technological cycles of agricultural uavs,” in E3S Web of Conferences, vol. 443, p. 06014, EDP Sciences, 2023.
  21. T. M. Bandara, W. Mudiyanselage, and M. Raza, “Smart farm and monitoring system for measuring the environmental condition using wireless sensor network-iot technology in farming,” in 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA), pp. 1–7, IEEE, 2020.
  22. A. Basharat and M. M. B. Mohamad, “Security challenges and solutions for internet of things based smart agriculture: A review,” in 2022 4th International Conference on Smart Sensors and Application (ICSSA), pp. 102–107, IEEE, 2022.
  23. R. Chandra and S. Collis, “Digital agriculture for small-scale producers: challenges and opportunities,” Communications of the ACM, vol. 64, no. 12, pp. 75–84, 2021.
  24. F. Kalantari, O. M. Tahir, R. A. Joni, and E. Fatemi, “Opportunities and challenges in sustainability of vertical farming: A review,” Journal of Landscape Ecology, vol. 11, no. 1, pp. 35–60, 2018.
  25. X. Zhang, Z. Cao, and W. Dong, “Overview of edge computing in the agricultural internet of things: key technologies, applications, challenges,” Ieee Access, vol. 8, pp. 141748–141761, 2020.
  26. L. Klerkx, E. Jakku, and P. Labarthe, “A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda,” NJAS-Wageningen journal of life sciences, vol. 90, p. 100315, 2019.
  27. N. Khan, R. L. Ray, G. R. Sargani, M. Ihtisham, M. Khayyam, and S. Ismail, “Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture,” Sustainability, vol. 13, no. 9, p. 4883, 2021.
  28. T. M. Banhazi, L. Babinszky, V. Halas, and M. Tscharke, “Precision livestock farming: Precision feeding technologies and sustainable livestock production,” International Journal of Agricultural and Biological Engineering, vol. 5, no. 4, pp. 54–61, 2012.
  29. M. A. Ferrag, L. Shu, O. Friha, and X. Yang, “Cyber security intrusion detection for agriculture 4.0: Machine learning-based solutions, datasets, and future directions,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 3, pp. 407–436, 2021.
  30. B. Sahu, S. Chatterjee, S. Mukherjee, and C. Sharma, “Tools of precision agriculture: A review,” Int. J. Chem. Stud, vol. 7, no. 6, pp. 2692–2697, 2019.
  31. G. Fastellini and C. Schillaci, “Precision farming and iot case studies across the world,” in Agricultural internet of things and decision support for precision smart farming, pp. 331–415, Elsevier, 2020.
  32. K. Obaideen, B. A. Yousef, M. N. AlMallahi, Y. C. Tan, M. Mahmoud, H. Jaber, and M. Ramadan, “An overview of smart irrigation systems using iot,” Energy Nexus, p. 100124, 2022.
  33. Y. Tace, M. Tabaa, S. Elfilali, C. Leghris, H. Bensag, and E. Renault, “Smart irrigation system based on iot and machine learning,” Energy Reports, vol. 8, pp. 1025–1036, 2022.
  34. K. Al-Kodmany, “The vertical farm: A review of developments and implications for the vertical city,” Buildings, vol. 8, no. 2, p. 24, 2018.
  35. D. C. Rose and J. Chilvers, “Agriculture 4.0: Broadening responsible innovation in an era of smart farming,” Frontiers in Sustainable Food Systems, vol. 2, p. 87, 2018.
  36. A. A. More and V. B. Sonawane, “Iot based smart farming,” International Research Journal of Engineering and Technology (IRJET), vol. 7, no. 06, 2020.
  37. M. Javaid, A. Haleem, R. P. Singh, and R. Suman, “Enhancing smart farming through the applications of agriculture 4.0 technologies,” International Journal of Intelligent Networks, vol. 3, pp. 150–164, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Emmanuel Kojo Gyamfi (2 papers)
  2. Zag ElSayed (30 papers)
  3. Jess Kropczynski (10 papers)
  4. Mustapha Awinsongya Yakubu (2 papers)
  5. Nelly Elsayed (42 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com